We present an improved version of the configuration-based multi-reference second-order perturbation approach (CB-MRPT2) according to the formulation of Lindgren on perturbation theory of a degenerate model space. This version involves a reclassification of the perturbation functions and new algorithms to calculate matrix elements in the perturber energy expressions utilizing the graphical unitary group approach and the hole-particle symmetry. The diagonalize-then-perturb (DP), including Rayleigh-Schrödinger and Brillouin-Wigner, and diagonalize-then-perturb-then-diagonalize (DPD) modes have been implemented. The new CB-MRPT2 method is applied to several typical and interesting systems: (1) the vertical excitation energies for several states of CO and N(2), (2) energy comparison and timing of the ground state of C(4)H(6), (3) the quasi-degeneracy of states in LiF, (4) the intruder state problems of AgH, and (5) the relative energies of di-copper-oxygen-ammonia complex isomers. The results indicate that the computational accuracy and efficiency of the presented methods are competitive and intruder-free. It should be emphasized that the DPD method rectifies naturally the shortcomings of LiF potential energy curves constructed by the original second order complete active space perturbation theory (CASPT2), without having to recourse to the so-called state mixture. Unlike CASPT2, the new methods give the same energy ordering for the two di-copper-oxygen-ammonia isomers as the previous multi-reference configuration interaction with single and double excitations methods. The new CB-MRPT2 method is shown to be a useful tool to study small to medium-sized systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4757264 | DOI Listing |
J Chem Theory Comput
January 2025
Instituut-Lorentz, Universiteit Leiden, Leiden 2300RA, The Netherlands.
Embedding techniques allow the efficient description of correlations within localized fragments of large molecular systems while accounting for their environment at a lower level of theory. We introduce FragPT2: a novel embedding framework that addresses multiple interacting active fragments. Fragments are assigned separate active spaces, constructed by localizing canonical molecular orbitals.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland.
A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Thermodynamics Research Center, National Institute of Standards and Technology, Boulder, Colorado 80305-3337, United States.
Our recently developed approach based on the local coupled-cluster with single, double, and perturbative triple excitation [LCCSD(T)] model gives very efficient means to compute the ideal-gas enthalpies of formation. The expanded uncertainty (95% confidence) of the method is about 3 kJ·mol for medium-sized compounds, comparable to typical experimental measurements. Larger compounds of interest often exhibit many conformations that can significantly differ in intramolecular interactions.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
Traditionally, excitation energies in coupled-cluster (CC) theory have been calculated by solving the CC Jacobian eigenvalue equation. However, based on our recent work [Jørgensen et al., Sci.
View Article and Find Full Text PDFChem Sci
December 2024
VASP Software GmbH Berggasse 21 A-1090 Vienna Austria.
Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!