For several decades, both in vitro and in vivo models of seizures and epilepsy have been employed to unravel the molecular and cellular mechanisms underlying the occurrence of spontaneous recurrent seizures (SRS)-the defining hallmark of the epileptic brain. However, despite great advances in our understanding of seizure genesis, investigators have yet to develop reliable biomarkers and surrogate markers of the epileptogenic process. Sadly, the pathogenic mechanisms that produce the epileptic condition, especially after precipitating events such as head trauma, inflammation, or prolonged febrile convulsions, are poorly understood. A major challenge has been the inherent complexity and heterogeneity of known epileptic syndromes and the differential genetic susceptibilities exhibited by patients at risk. Therefore, it is unlikely that there is only one fundamental pathophysiologic mechanism shared by all the epilepsies. Identification of antiepileptogenesis targets has been an overarching goal over the last decade, as current anticonvulsant medications appear to influence only the acute process of ictogenesis. Clearly, there is an urgent need to develop novel therapeutic interventions that are disease modifying-therapies that either completely or partially prevent the emergence of SRS. An important secondary goal is to develop new treatments that can also lessen the burden of epilepsy comorbidities (e.g., cognitive impairment, mood disorders) by preventing or reducing the deleterious changes during the epileptogenic process. This review summarizes novel antiepileptogenesis targets that were critically discussed at the XIth Workshop on the Neurobiology of Epilepsy (WONOEP XI) meeting in Grottaferrata, Italy. Further, emerging neurometabolic links among several target mechanisms and highlights of the panel discussion are presented.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5011430 | PMC |
http://dx.doi.org/10.1111/j.1528-1167.2012.03716.x | DOI Listing |
Epilepsia
July 2024
Department of Neurology and Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri, USA.
Objective: The mechanistic target of rapamycin (mTOR) pathway has been implicated in promoting epileptogenesis in animal models of acquired epilepsy, such as posttraumatic epilepsy (PTE) following traumatic brain injury (TBI). However, the specific anatomical regions and neuronal populations mediating mTOR's role in epileptogenesis are not well defined. In this study, we tested the hypothesis that mTOR activation in dentate gyrus granule cells promotes neuronal death, mossy fiber sprouting, and PTE in the controlled cortical impact (CCI) model of TBI.
View Article and Find Full Text PDFEpilepsia
April 2024
Department of Neurology, New York University Grossman School of Medicine and NYU Langone Health, New York, New York, USA.
Substantial efforts are underway toward optimizing the diagnosis, monitoring, and treatment of seizures and epilepsy. We describe preclinical programs in place for screening investigational therapeutic candidates in animal models, with particular attention to identifying and eliminating drugs that might paradoxically aggravate seizure burden. After preclinical development, we discuss challenges and solutions in the design and regulatory logistics of clinical trial execution, and efforts to develop disease biomarkers and interventions that may be not only seizure-suppressing, but also disease-modifying.
View Article and Find Full Text PDFNeurology
November 2023
From the Department of Neurology (S.M., E.E., L.H.S., J.J.S., N.K.M.), Yale University School of Medicine, New Haven, CT; Medical School (E.I.K.), B.J. Medical College and Civil Hospital, Ahmedabad, India; Keck MS & Proteomics Resource (T.T.L.), Yale University School of Medicine, New Haven, CT; Department of Neurology (R.M., K.G., L.B.H., D.S.L.), University of California, Los Angeles; Department of Neurology (K.G.), Icahn School of Medicine at Mount Sinai, New York, NY; Department of Neurology (V.G.), Tower Health, Philadelphia, PA; Harvey Cushing/John Hay Whitney Medical Library (M.C.F.), Yale University, New Haven, CT; Department of Immunobiology (L.H.S.), Yale University School of Medicine, New Haven, CT; Institute of Cardiovascular and Medical Sciences (T.J.Q.), University of Glasgow, Scotland, UK; Institute de Biomedicine of Seville (J.M.), IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville; Department of Neurology (J.M.), Hospital Universitario Virgen Macarena, Seville; Neurovascular Research Laboratory Vall d'Hebron Institute of Research (VHIR) (J.M.), Barcelona, Spain; and Department of Neuroscience (P.K.), Central Clinical School, Monash University, Melbourne, Australia.
Background And Objectives: Epilepsy may result from various brain injuries, including stroke (ischemic and hemorrhagic), traumatic brain injury, and infections. Identifying shared common biological pathways and biomarkers of the epileptogenic process initiated by the different injuries may lead to novel targets for preventing the development of epilepsy. We systematically reviewed biofluid biomarkers to test their association with the risk of post-brain injury epilepsy.
View Article and Find Full Text PDFMol Neurobiol
November 2022
Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
Programmed neural circuit formation constitutes the foundation for normal brain functions. Axon guidance cues play crucial roles in neural circuit establishment during development. Whether or how they contribute to maintaining the stability of networks in mature brains is seldom studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!