Essential residues in lysolecithin:lysolecithin acyltransferase from rabbit lung: assessment by chemical modification.

Arch Biochem Biophys

Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain.

Published: February 1990

The inhibition of lysolecithin:lysolecithin acyltransferase by several specific reagents was studied. Diisopropyl fluorophosphate (DFP) completely inhibited both activities at a concentration of 4 mM. Activity was not protected by substrate and the enzyme showed a change in circular dichroism spectrum upon treatment with inhibitor. Phenylmethanesulfonyl fluoride, another serine-specific reagent, did not inhibit either hydrolysis or transacylation. Therefore, we suggest that DFP does not modify an active serine in the catalytic site. p-Hydroxymercury benzoate and N-ethylmaleimide (NEM) abolished both activities of the enzyme. The presence of substrate partially protected against inactivation. Far-uv CD spectrum of NEM-modified enzyme revealed no changes in protein structure. The existence of two classes of essential cysteine residues was deduced from kinetics of NEM inactivation. Both classes differ in NEM reactivity and also in their participation in the catalytic mechanism. A tyrosine-specific reagent, tetranitromethane, also inhibited hydrolysis and transacylation, following first-order kinetics. The partial protection by substrate suggested the possible existence of essential tyrosines near the active site. At pH 5.0 N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline inactivated hydrolysis but not transacylation. However, both of them remained unchanged at pH 6.5. The substrate prevented the loss of hydrolytic ability. Therefore, a carboxyl residue participating just in the catalytic mechanism of hydrolysis is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(90)90553-bDOI Listing

Publication Analysis

Top Keywords

hydrolysis transacylation
12
lysolecithinlysolecithin acyltransferase
8
catalytic mechanism
8
essential residues
4
residues lysolecithinlysolecithin
4
acyltransferase rabbit
4
rabbit lung
4
lung assessment
4
assessment chemical
4
chemical modification
4

Similar Publications

Bis(monoacylglycerol)phosphate (BMP) is an acidic glycerophospholipid localized to late endosomes and lysosomes. However, the metabolism of BMP is poorly understood. Because many drugs that cause phospholipidosis inhibit lysosomal phospholipase A2 (LPLA2, PLA2G15, LYPLA3) activity, we investigated whether this enzyme has a role in BMPcatabolism.

View Article and Find Full Text PDF

Drugs and drug metabolites containing a carboxylic-acid moiety can undergo in vivo conjugation to form 1-β-O-acyl-glucuronides (1-β-O-AGs). In addition to hydrolysis, these conjugates can undergo spontaneous acyl migration, and anomerisation reactions, resulting in a range of positional isomers. Facile transacylation has been suggested as a mechanism contributing to the toxicity of acyl glucuronides, with the kinetics of these processes thought to be a factor.

View Article and Find Full Text PDF

PNPLA-mediated lipid hydrolysis and transacylation - At the intersection of catabolism and anabolism.

Biochim Biophys Acta Mol Cell Biol Lipids

March 2024

Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria; Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria. Electronic address:

Patatin-like phospholipase domain containing proteins (PNPLAs) play diverse roles in lipid metabolism. In this review, we focus on the enzymatic properties and predicted 3D structures of PNPLA1-5. PNPLA2-4 exert both catabolic and anabolic functions.

View Article and Find Full Text PDF

Fatty acids (FAs) are crucial energy metabolites, signalling molecules, and membrane building blocks for a wide range of organisms. Adipose triglyceride lipase (ATGL) is the first and presumingly most crucial regulator of FA release from triacylglycerols (TGs) stored within cytosolic lipid droplets. However, besides the function of releasing FAs by hydrolysing TGs into diacylglycerols (DGs), ATGL also promotes the transacylation reaction of two DG molecules into one TG and one monoacylglycerol molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!