Pyrvinium pamoate (PP) is an FDA-approved classical anthelmintic, but is now attracting particular attention as an anti-cancer drug after recent findings of its potent cytotoxicity against various cancer cell lines only during glucose starvation, as well as its anti-tumor activity against hypovascular pancreatic cancer cells transplanted in mice. The molecular mechanisms by which PP promotes such preferential toxicity against cancer cells are currently under extensive investigation. PP suppressed the NADH-fumarate reductase system that mediates a reverse reaction of the mitochondrial electron-transport chain complex II in anaerobic organisms such as parasitic helminthes or mammalian cells under tumor microenvironment-mimicking hypoglycemic/hypoxic conditions, thereby inhibiting efficient ATP production. PP also inhibited the unfolded protein response induced by glucose starvation, thereby inhibiting the proliferation of pancreatic cancer cells. Even under normoglycemic/normoxic conditions, PP suppressed the mitochondrial electron-transport chain complex I and thereby STAT3, inhibiting the proliferation of myeloma/erythroleukemia cells. Here, we review accumulating knowledge on its working mechanisms and evaluate PP as a novel anti-cancer drug that targets mitochondrial respiration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3462317 | PMC |
http://dx.doi.org/10.3389/fonc.2012.00137 | DOI Listing |
Mol Divers
January 2025
Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
Apigenin, a dietary flavonoid with notable anti-cancer properties, has emerged as a promising candidate for the treatment of neurodegenerative disorders, particularly Alzheimer's disease (AD). While extensively studied for its ability to modulate key molecular pathways in cancers, apigenin also exerts neuroprotective effects by reducing neuroinflammation, protecting neurons from oxidative stress, and enhancing neuronal survival and synaptic plasticity. This dual functionality makes apigenin an intriguing therapeutic option for diseases like AD, where kinase dysregulation plays a central role.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Laboratory of Biochemistry and Toxicology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece.
Background: Lately, significant attention has been drawn towards the potential efficacy of cholera toxin (CT)-an exotoxin produced by the small intestine pathogenic bacterium Vibrio cholera-in modulating cancer-promoting events. In a recent study, we demonstrated that early-life oral administration of non-pathogenic doses of CT in mice suppressed chemically-induced carcinogenesis in tissues distantly located from the gut. In the mammary gland, CT pretreatment was shown to reduce tumor multiplicity, increase apoptosis and alter the expression of several cancer-related molecules.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, P. R. China.
Patients with ulcerative colitis (UC) have a higher risk of developing colorectal cancer (CRC), however, the metabolic shifts during the UC-to-CRC transition remain elusive. In this study, an AOM-DSS-induced three-stage colitis-associated colorectal cancer (CAC) model is constructed and targeted metabolomics analysis and pathway enrichment are performed, uncovering the metabolic changes in this transition. Spatial metabolic trajectories in the "normal-to-normal adjacent tissue (NAT)-to-tumor" transition, and temporal metabolic trajectories in the "colitis-to-dysplasia-to-carcinoma" transition are identified through K-means clustering of 74 spatially and 77 temporally differential metabolites, respectively.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
Herbal medicine are an invaluable reservoir of bioactive compounds, offering immense potential for novel drug development to address a wide range of diseases. Among these, has gained recognition for its historical medicinal applications and substantial therapeutic potential. This review explores the ethnopharmacological significance, phytochemical composition, and pharmacological properties of , with a particular focus on its anticancer activities.
View Article and Find Full Text PDFFront Immunol
January 2025
Tianjin Organ Transplantation Research Center, Tianjin First Central Hospital, Nankai University School of Medicine, Tianjin, China.
Organ transplantation is a life-saving intervention that enhances the quality of life for patients with end-stage organ failure. However, long-term immunosuppressive therapy is required to prevent allogeneic graft rejection, which inadvertently elevates the risk of post-transplant malignancies, especially for liver transplant recipients with a prior history of liver cancer. In response, the emerging field of transplant oncology integrates principles from oncology and immunology to improve outcomes for patients at high risk of tumor occurrence or recurrence following transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!