Background: A major barrier to the clinical application of xenotransplantation as a treatment option for patients is T cell-mediated rejection. Studies based on experimental rodent models of xenograft tolerance or rejection in vivo have provided useful information about the role of T cell immune response in xenotransplantation. However not all observations seen in rodents faithfully recapitulate the human situation. This study aimed to establish a humanized mouse model of xenotransplantation, which mimics xenograft rejection in the context of the human immune system.
Methods: NOD-SCID IL2rgamma-/- mice were transplanted with neonatal porcine islet cell clusters (NICC) followed by reconstitution of human peripheral blood mononuclear cells (PBMC). Human leukocyte engraftment and islet xenograft rejection were confirmed by flow cytometric and histological analyses.
Results: In the absence of human PBMC, porcine NICC transplanted into NOD-SCID IL2rgamma-/- mice revealed excellent graft integrity and endocrine function. Human PBMC demonstrated a high level of engraftment in NOD-SCID IL2rgamma-/- mice. Reconstitution of NICC recipient NOD-SCID IL2rgamma-/- mice with human PBMC led to the rapid destruction of NICC xenografts in a PBMC number-dependent manner.
Conclusions: Human PBMC-reconstituted NOD-SCID IL2rgamma-/- mice provide an ideal model to study human immune responses in xenotransplantation. Studies based on this humanized mouse model will provide insight for improving the outcomes of clinical xenotransplantation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s1499-3872(12)60213-6 | DOI Listing |
Cancer Lett
December 2024
Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China. Electronic address:
Bone marrow stromal cells (BMSCs) are vital for preventing chemotherapy induced apoptosis of multiple myeloma (MM), but roles and machinery in other forms of cell death have not been well elucidated. Here, using an in vitro BMSC-MM interacting model, we observed BMSCs protected MM cells from labile iron pool (LIP) and reactive oxygen species (ROS) triggered ferroptosis by elevating glutathione peroxidase 4 (GPX4). Mechanistically, direct interaction with BMSCs upregulated the expression of SUMO-specific protease 3 (SENP3) in MM cells through CD40/CD40L signaling pathway, and SENP3 de-conjugated SUMO2 at lysine 75 residue to stabilize GPX4 protein, thereby consuming ROS to obviate ferroptosis in MM cells from the Vk∗MYC mouse model, as well as in CD138B220 cells separated from the Cd40l;Prx1 mice (CD40-CKO) and Sumo2 knock out (SUMO2-KO) mice.
View Article and Find Full Text PDFBr J Haematol
January 2025
Centre for Cancer Biomarkers CCBIO, Department of Clinical Science, University of Bergen, Bergen, Norway.
Resazurin, a phenoxazine used in cell viability assays, acts in vitro as an anti-leukaemic compound through the production of cellular reactive oxygen species (ROS) resulting in mitochondrial dysfunction and cell death. However, the in vivo tolerance and efficacy of resazurin in cancer are unknown. In this study, we investigated the in vitro and in vivo effects of resazurin in acute myeloid leukaemia (AML).
View Article and Find Full Text PDFHemasphere
October 2024
Nantes Université, INSERM, CHU Nantes CNRS, Université d'Angers, CRCI2NA Nantes France.
In multiple myeloma, as in B-cell malignancies, mono- and especially bi-allelic gene inactivation is a high-risk factor for treatment resistance, and there are currently no therapies specifically targeting p53 deficiency. In this study, we evaluated if the loss of cell cycle control in p53-deficient myeloma cells would confer a metabolically actionable vulnerability. We show that CTP synthase 1 (), which encodes a CTP synthesis rate-limiting enzyme essential for DNA and RNA synthesis in lymphoid cells, is overexpressed in samples from myeloma patients displaying a high proliferation rate (high expression) or a low p53 score (synonymous with deletion and/or mutation).
View Article and Find Full Text PDFSci Rep
September 2024
Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-Ro, Hwasun-Eup, Hwasun-Gun, Jeollanam-Do, 58128, Republic of Korea.
Preclinical drug efficacy and tumor microenvironment (TME) investigations often utilize humanized xenograft mouse models, yet these models typically fall short in replicating the intricate TME. We developed a humanized liver metastasis (LM) model by transplanting human peripheral blood mononuclear cells (PBMCs) and assessed it against the conventional subcutaneous (SC) xenograft model, focusing on immune cell dynamics post-transplantation and immunotherapy response. NOD-scid IL2Rgamma(NSG) were inoculated with PBMCs to create humanized models.
View Article and Find Full Text PDFUnlabelled: Natural killer (NK) cells kill target cells following triggering via germline-encoded receptors interacting with target cell-expressed ligands (direct killing), or via antibody-dependent cellular cytotoxicity (ADCC) mediated by FcγRIIIa. NK cytotoxicity is modulated by signaling through activating or inhibitory receptors. A major checkpoint is mediated by the NK inhibitory receptor NKG2A/CD94 and its target cell ligand, HLA-E, which is complexed with HLA signal sequence-derived peptides termed VL9 (HLA-E-VL9).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!