Mitofilin regulates cytochrome c release during apoptosis by controlling mitochondrial cristae remodeling.

Biochem Biophys Res Commun

National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), 5 Dong Dan San Tiao, Beijing 100005, PR China.

Published: November 2012

Mitochondria amplify caspase-dependent apoptosis by releasing proapoptotic proteins, especially cytochrome c. This process is accompanied by mitochondrial cristae remodeling. Our studies demonstrated that mitofilin, a mitochondrial inner membrane protein, acted as a cristae controller to regulate cytochrome c release during apoptosis. Knockdown of mitofilin in HeLa cells with RNAi led to fragmentation of the mitochondrial network and disorganization of the cristae. Mitofilin-deficient cells showed cytochrome c redistribution between mitochondrial cristae and the intermembrane space (IMS) upon intrinsic apoptotic stimuli. In vitro cytochrome c release experiments further confirmed that, compared with the control group, tBid treatment led to an increase in cytochrome c release from mitofilin-deficient mitochondria. Furthermore, the cells with mitofilin knockdown were more prone to apoptosis by accelerating cytochrome c release upon the intrinsic apoptotic stimuli than controls. Moreover, mitofilin deficiency did not interfere with the activation of proapoptotic member Bax upon intrinsic apoptotic stimuli. Thus, mitofilin distinctly functions in cristae remodeling and controls cytochrome c release during apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.10.012DOI Listing

Publication Analysis

Top Keywords

cytochrome release
24
release apoptosis
12
mitochondrial cristae
12
cristae remodeling
12
intrinsic apoptotic
12
apoptotic stimuli
12
cytochrome
8
mitofilin
6
release
6
cristae
6

Similar Publications

The decline in autophagy disrupts homeostasis in skin cells, leading to oxidative stress, energy deficiency, and inflammation-all key contributors to skin photoaging. Consequently, activating autophagy has become a focal strategy for delaying skin photoaging. Natural plants are rich in functional molecules and widely used in the development of anti-photoaging cosmetics.

View Article and Find Full Text PDF

Cholesterol Attenuates the Pore-Forming Capacity of CARC-Containing Amphipathic Peptides.

Int J Mol Sci

January 2025

A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, Leninskie Gory 1, Bld. 40, Moscow 119992, Russia.

Artificial peptides P4, A1 and A4 are homologous to amphipathic α-helical fragments of the influenza virus M1 protein. P4 and A4 contain the cholesterol recognition sequence CARC, which is absent in A1. As shown previously, P4 and A4 but not A1 have cytotoxic effects on some eukaryotic and bacterial cells.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are persistent organic pollutants emitted during e-waste activities. Upon release into the environment, PCBs can pose harmful effects to the humans and environment. The present review focused on the effects of PCBs on cell proliferation, apoptosis, functional and developmental toxicity and potential possible molecular mechanisms upon cells and stem cells.

View Article and Find Full Text PDF

Exploring the Anticancer Potential of MonoHER (7-Mono-O-(β-Hydroxyethyl)-Rutoside): Mitochondrial-Dependent Apoptosis in HepG2 Cells.

Curr Issues Mol Biol

January 2025

The M-Lab, Department of Precision Medicine, GROW-Research Institute for Oncology and Reproduction, Maastricht University, 6200MD Maastricht, The Netherlands.

Background/aim: Flavonoids are a group of polyphenols, abundantly present in our diet. Although, based on their chemoprotective effects, intake of flavonoids is associated with a high anticancer potential as evidenced in in vitro and in vivo models, the molecular mechanism is still elusive. This study explores the antiproliferative and cytotoxic effects of the semi-synthetic flavonoid MonoHER (7-mono-O-(β-hydroxyethyl)-rutoside) in vitro on cancer cells.

View Article and Find Full Text PDF

A novel genotype of Babesia microti-like group in Ixodes montoyanus ticks parasitizing the Andean bear (Tremarctos ornatus) in Ecuador.

Exp Appl Acarol

January 2025

Laboratorio de Vectores y Enfermedades Transmitidas, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Salto, Uruguay.

Babesia species (Piroplasmida) are hemoparasites that infect erythrocytes of mammals and birds and are mainly transmitted by hard ticks (Acari: Ixodidae). These hemoparasites are known to be the second most common parasites infecting mammals, after trypanosomes, and some species may cause malaria-like disease in humans. Diagnosis and understanding of Babesia diversity increasingly rely on genetic data obtained through molecular techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!