A model was developed to determine the local changes of concentration of particles and the formations of bands induced by a standing acoustic wave field subjected to a sawtooth frequency ramping pattern. The mass transport equation was modified to incorporate the effect of acoustic forces on the concentration of particles. This was achieved by balancing the forces acting on particles. The frequency ramping was implemented as a parametric sweep for the time harmonic frequency response in time steps of 0.1s. The physics phenomena of piezoelectricity, acoustic fields and diffusion of particles were coupled and solved in COMSOL Multiphysics™ (COMSOL AB, Stockholm, Sweden) following a three step approach. The first step solves the governing partial differential equations describing the acoustic field by assuming that the pressure field achieves a pseudo steady state. In the second step, the acoustic radiation force is calculated from the pressure field. The final step allows calculating the locally changing concentration of particles as a function of time by solving the modified equation of particle transport. The diffusivity was calculated as function of concentration following the Garg and Ruthven equation which describes the steep increase of diffusivity when the concentration approaches saturation. However, it was found that this steep increase creates numerical instabilities at high voltages (in the piezoelectricity equations) and high initial particle concentration. The model was simplified to a pseudo one-dimensional case due to computation power limitations. The predicted particle distribution calculated with the model is in good agreement with the experimental data as it follows accurately the movement of the bands in the centre of the chamber.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultsonch.2012.08.014DOI Listing

Publication Analysis

Top Keywords

frequency ramping
12
concentration particles
12
particles frequency
8
pressure field
8
steep increase
8
particles
6
concentration
6
acoustic
5
multiphysics modelling
4
modelling separation
4

Similar Publications

Alzheimer's disease [AD] disproportionately affects our seniors, diminishing their health and life expectancy. As the world population grows older, the collective burden of AD has become unsustainable. Globally, there were 43.

View Article and Find Full Text PDF

The Institute of Electrical and Electronics Engineers establishes exposure reference levels ( ERL s) for electric fields ( E -fields) (0-300 GHz) and both induced ( I IND ) and contact currents ( I SC ) (<110 MHz) in its standard, IEEE Std C95.1™-2019 (IEEE C95.1).

View Article and Find Full Text PDF

We can often anticipate the precise moment when a stimulus will be relevant for our behavioral goals. Voluntary temporal attention, the prioritization of sensory information at task-relevant time points, enhances visual perception. However, the neural mechanisms of voluntary temporal attention have not been isolated from those of temporal expectation, which reflects timing predictability rather than relevance.

View Article and Find Full Text PDF

Alarm calls of sagebrush converge when herbivory is high.

Proc Biol Sci

September 2024

Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 8 , Kuopio 70211, Finland.

Herbivory is a major threat to virtually all plants, so adaptations to avoid herbivory will generally be selected. One potential adaptation is the ability to 'listen in' on the volatile cues emitted by plants that are experiencing herbivory and to then respond by ramping up defences. The nature of these volatile cues is poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!