Developing approaches to effectively induce and control the magnetic states is critical to the use of magnetic nanostructures in quantum information devices but is still challenging. Here we have demonstrated, by employing the density functional theory calculations, the existence of infinite magnetic sheets with structural integrity and magnetic homogeneity. Examination of a series of transition metal dichalcogenides shows that the biaxial tensile strained NbS(2) and NbSe(2) structures can be magnetized with a ferromagnetic character due to the competitive effects of through-bond interaction and through-space interaction. The estimated Curie temperatures (387 and 542 K under the 10% strain for NbS(2) and NbSe(2) structures, respectively) suggest that the unique ferromagnetic character can be achieved above room temperature. The self-exchange of population between 4d orbitals of the Nb atom that leads to exchange splitting is the mechanism behind the transition of the spin moment. The induced magnetic moments can be significantly enhanced by the tensile strain, even giving rise to a half-metallic character with a strong spin polarization around the Fermi level. Given the recent progress in achieving the desired strain on two-dimensional nanostructures, such as graphene and a BN layer, in a controlled way, we believe that our calculated results are suitable for experimental verification and implementation, opening a new path to explore the spintronics in pristine two-dimensional nanostructures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn303198wDOI Listing

Publication Analysis

Top Keywords

nbs2 nbse2
12
tensile strain
8
nbse2 structures
8
ferromagnetic character
8
two-dimensional nanostructures
8
magnetic
5
strain switched
4
switched ferromagnetism
4
ferromagnetism layered
4
layered nbs2
4

Similar Publications

P-Type Vertical FETs Realized by Using Fermi-Level Pinning-Free 2D Metallic Electrodes.

Nano Lett

December 2024

SKKU Advanced Institute of Nano Technology and Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea.

In two-dimensional (2D) nanomaterial electronics, vertical field-effect transistors (VFETs), where charges flow perpendicular to the channel materials, hold promise due to the ease of forming ultrashort channel lengths by utilizing the thinness of 2D materials. However, the poor performance of p-type VFET arises from the lack of a gate-field-penetrating electrode with suitable work functions, which is essential for VFET operation. This motivated us to replace graphene (work function of ∼4.

View Article and Find Full Text PDF

Perturbation of autophagy pathways in murine alveolar macrophage by 2D TMDCs is chalcogen-dependent.

J Environ Sci (China)

January 2024

Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.

Increasing risks of incidental and occupational exposures to two-dimensional transition metal dichalcogenides (2D TMDCs) due to their broad application in various areas raised their public health concerns. While the composition-dependent cytotoxicity of 2D TMDCs has been well-recognized, how the outer chalcogenide atoms and inner transition metal atoms differentially contribute to their perturbation on cell homeostasis at non-lethal doses remains to be identified. In the present work, we compared the autophagy induction and related mechanisms in response to WS, NbS, WSe and NbSe nanosheets exposures in MH-S murine alveolar macrophages.

View Article and Find Full Text PDF

Intercalation of Metal into Transition Metal Dichalcogenides in Molten Salts.

Small

January 2024

Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.

Van der Waals (vdW)-layered materials have drawn tremendous interests due to their unique properties. Atom intercalation in the vdW gap of layered materials can tune their electronic structure and generate unexpected properties. Here a chemical-scissor-mediated method that enables metal intercalation into transition metal dichalcogenides (TMDCs) in molten salts is reported.

View Article and Find Full Text PDF

Use of transition metal dichalcogenides (TMDs) in analytical sample preparation applications.

Talanta

January 2024

Erzincan Binali Yildirim University, Cayirli Vocational School, Department of Medical Services and Technicians, 24503, Erzincan, Turkey. Electronic address:

Since the discovery of graphene, nano-sized two-dimensional (2D) transition metal dichalcogenides (TMDs) such as MoS, MoSe, MoTe, NbS, NbSe, WS, WSe, TaS and TaSe, which have been classified as next-generation nanomaterials resembling graphene (G) have complementary basic properties with those of graphene in terms of their practical applications. TMDs are attracting great attention due to their attractive physical, chemical and electronic properties. Despite being overshadowed by graphene in terms of frequency of use, TMDs have been used frequently in many areas in recent years instead of carbon-based materials such as graphene (G), graphene oxide (GO), carbon nanotubes (CNTs) and nanodiamonds (NDs).

View Article and Find Full Text PDF

Intensity-Dependent Optical Response of 2D LTMDs Suspensions: From Thermal to Electronic Nonlinearities.

Nanomaterials (Basel)

August 2023

Materials and Manufacturing Directorate, Air Force Research Laboratories, Wright-Patterson Air Force Base, Dayton, OH 45433, USA.

The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light-matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with semiconducting and metallic optical properties. In this article, we review most of our work in studies of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the nonlinear optical response of semiconducting MoS, MoSe, MoTe, WS, semimetallic WTe, ZrTe, and metallic NbS and NbSe.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!