Numerous compounds have been prepared in order to improve the pharmacological profile of insulinotropic activities. In the present paper, we report the synthesis and the in vitro insulin releasing activity of the 6-methyl-chromonyl-2,4-thiazolidinediones (IIIa-c, IVa-c, Va-c). Compounds IIIb, IIIc, IVa-c, Va and Vc (at lower concentration; 0.001 mg/mL) were able to increase insulin release in the presence of 5.6 mmol/L glucose. In this series, the most potent compound is IVa having methyl group at N3 position of TZD ring.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14756366.2012.723207DOI Listing

Publication Analysis

Top Keywords

synthesis antidiabetic
4
antidiabetic activity
4
activity 24-thiazolidindione
4
24-thiazolidindione imidazolidinedione
4
imidazolidinedione 2-thioxo-imidazolidine-4-one
4
2-thioxo-imidazolidine-4-one derivatives
4
derivatives bearing
4
bearing 6-methyl
4
6-methyl chromonyl
4
chromonyl pharmacophore
4

Similar Publications

Ursodeoxycholic acid grafted chitosan oligosaccharide self-assembled micelles with enhanced oral absorption and antidiabetic effect of oleanolic acid.

Food Chem

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China. Electronic address:

Oleanolic acid (OA) is a food-derived bioactive component with antidiabetic activity, but its water solubility and oral bioavailability are notably restricted. In this study, to overcome these limitations, ursodeoxycholic acid-modified chitosan oligosaccharide (UCOS) was synthesized to encapsulate OA in self-assembled nanomicelles (UCOS-OA). The encapsulation efficiency and drug loading of UCOS-OA were 86 % and 11 %, respectively.

View Article and Find Full Text PDF

One way to treat diabetes mellitus type II is by using α-glucosidase inhibitor, that will slow down the postprandial glucose intake. Metabolomics analysis of Artabotrys sumatranus leaf extract was used in this research to predict the active compounds as α-glucosidase inhibitors from this extract. Both multivariate statistical analysis and machine learning approaches were used to improve the confidence of the predictions.

View Article and Find Full Text PDF

Neuroendocrine tumors and diabetes mellitus: which treatment and which effect.

Endocrine

January 2025

Unit of Endocrinology, Department of Clinical and Molecular Medicine, ENETS Center of Excellence, Sapienza University of Rome, Rome, Italy.

Diabetes mellitus (DM) and neuroendocrine tumors (NET) can exert unfavorable effects on each other prognosis. In this narrative review, we evaluated the effects of NET therapies on glycemic control and DM management and the effects of anti-diabetic therapies on NET outcome and management. For this purpose, we searched the PubMed, Science Direct, and Google Scholar databases for studies reporting the effects of NET therapy on DM as well as the effect of DM therapy on NET.

View Article and Find Full Text PDF

Alpha-Glucosidase Inhibitors in Aging and Aging-Related Diseases: Clinical Applications and Relevant Mechanisms.

Aging Dis

January 2025

Department of Endocrinology and Metabolism, Department of Biotherapy, Laboratory of Diabetes and Metabolism Research, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.

Aging is a complex and universal process marked by gradual functional declines at the cellular and tissue levels, often leading to a range of aging-related diseases such as diabetes, cardiovascular diseases, and cancer. Delaying the aging process can help prevent, slow down, and alleviate the severity of these various conditions, enhancing overall health and well-being. Alpha-glucosidase inhibitors (AGIs) are a class of widely used antidiabetic drugs that inhibit alpha-glucosidase in the small intestinal mucosa, delaying carbohydrate absorption and reducing postprandial hyperglycemia.

View Article and Find Full Text PDF

Background: Biological sex influences Alzheimer's disease (AD) development, particularly concerning brain insulin resistance (bIR) and early energy metabolism defects. Biliverdin reductase-A (BVR-A) plays a crucial role in insulin signaling, and its downregulation leads to bIR. However, the sex-related differences in AD neuropathology and underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!