By combining pseudorandom bead-based aptamer libraries with conjugation chemistry, we have created next-generation aptamers, X-aptamers (XAs). Several X-ligands can be added in a directed or random fashion to the aptamers to further enhance their binding affinities for the target proteins. Here we describe the addition of a drug (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), demonstrated to bind to CD44-HABD, to a complete monothioate backbone-substituted aptamer to increase its binding affinity for the target protein by up to 23-fold, while increasing the drug's level of binding 1-million fold.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924539 | PMC |
http://dx.doi.org/10.1021/bi300471d | DOI Listing |
J Chromatogr A
December 2024
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; School of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:
Extracellular vesicles (EVs) carrying lipids, proteins, nucleic acids and small molecular metabolites have emerged as an attractive paradigm for understanding and interfering physiological and pathological processes. To this end, selective and efficient separation approaches are highly demanded to obtain target EVs from complicated biosamples. With increasing knowledges on EV lipids, recent years have witnessed rapid advances of phospholipid-targeted affinity materials and platforms for high-performance isolation and analysis of EVs.
View Article and Find Full Text PDFAdv Healthc Mater
December 2024
Institute of Pharmaceutical Biotechnology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
Roseburia intestinalis, enriched in the gut, is closely associated with obesity, intestinal inflammation, and other diseases. A novel detection method for R. intestinalis to replace the commonly used 16S rRNA sequencing technique is aim to developed, thus enabling real-time and low-cost monitoring of gut microbiota.
View Article and Find Full Text PDFImaging mass cytometry (IMC) permits high-dimensional single-cell spatial proteomics by harnessing mass tags to replace conventional fluorescence tags. However, the current IMC technique commonly adopts metal-chelated polymer (MCP) tags, which are limited in sensitivity, multiplicity and data acquisition speed. Here, we demonstrate nanometal-organic framework (NMOF) tags, which could concurrently augment IMC's sensitivity, multiplicity, and acquisition speed.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2024
Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
Aptamers are short single-stranded DNA or RNA molecules with high affinity and specificity for targets and are generated using the iterative systematic evolution of ligands by exponential enrichment (SELEX) process. Next-generation sequencing (NGS) revolutionized aptamer selections by allowing a more comprehensive analysis of SELEX-enriched aptamers as compared to Sanger sequencing. The current challenge with aptamer NGS datasets is identifying a diverse cohort of candidate aptamers with the highest likelihood of successful experimental validation.
View Article and Find Full Text PDFFungal Biol Biotechnol
November 2024
Research Group Biochemistry, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria.
Background: Spores produced by the filamentous fungus Aspergillus niger are abundant in a variety of environments. The proliferation of this fungus in indoor environments has been associated to health risks and its conidia can cause allergic reaction and severe invasive disease in animals and humans. Therefore, the detection and monitoring of Aspergillus conidia is of utmost importance to prevent serious fungal infections and contaminations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!