Guanine is a major target for oxidation in DNA, with 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) as a major product. 8-oxodG is itself significantly more susceptible to oxidation than guanine, with the resulting damage consisting of more than 10 different products. This complexity has hampered efforts to understand the determinants of biologically relevant DNA oxidation chemistry. To address this problem, we have developed a high mass accuracy mass spectrometric method to quantify oxidation products arising site specifically in DNA. We applied this method to quantify the role of sequence context in defining the spectrum of damage products arising from oxidation of 8-oxodG by two oxidants: nitrosoperoxycarbonate (ONOOCO(2)(-)), a macrophage-derived chemical mediator of inflammation, and the classical one-electron oxidant, riboflavin-mediated photooxidation. The results reveal the predominance of dehydroguanidinohydantoin (DGh) in 8-oxodG oxidation by both oxidants. While the relative quantities of 8-oxodG oxidation products arising from ONOOCO(2)(-) did not vary as a function of sequence context, products of riboflavin-mediated photooxidation of 8-oxodG were highly sequence dependent. Several of the 8-oxodG oxidation products underwent hydrolytic conversion to new products with half-lives of 2-7 h. The results have implications for understanding the chemistry of DNA oxidation and the biological response to the damage, with DNA damage recognition and repair systems faced with a complex and dynamic set of damage targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3503518PMC
http://dx.doi.org/10.1021/ja307525hDOI Listing

Publication Analysis

Top Keywords

oxidation products
12
products arising
12
8-oxodg oxidation
12
oxidation
10
dna oxidation
8
method quantify
8
sequence context
8
riboflavin-mediated photooxidation
8
8-oxodg
7
products
7

Similar Publications

Changeover method for biosafety cabinets using ozone gas.

PLoS One

January 2025

Center for Stem Cell and Regenerative Medicine, Institute of Science Tokyo, Bunkyo-ku, Tokyo, Japan.

This study evaluated the effectiveness of a biosafety cabinet equipped with an ozone generator, particularly during the transition periods between the production of cell products. As living cell products cannot undergo sterilization, maintaining an aseptic manufacturing environment is paramount. Raw materials, often derived from human tissues, are frequently contaminated with various resident bacteria, necessitating environmental resets after each process.

View Article and Find Full Text PDF

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

Neomorphic leukemia-derived mutations in the TET2 enzyme induce genome instability via a substrate shift from 5-methylcytosine to thymine.

Proc Natl Acad Sci U S A

February 2025

Center for Medical Research and Innovation, Shanghai Pudong Hospital, Institutes of Biomedical Sciences, Chinese Academy of Medical Sciences (RU069), Medical College of Fudan University, Shanghai 201399, China.

Ten-eleven translocation (TET) enzymes oxidize 5-methylcytosine (mC) in DNA, contributing to the regulation of gene transcription. Diverse mutations of TET2 are frequently found in various blood cancers, yet the full scope of their functional consequences has been unexplored. Here, we report that a subset of TET2 mutations identified in leukemia patients alter the substrate specificity of TET2 from acting on mC to thymine.

View Article and Find Full Text PDF

Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress.

Adv Sci (Weinh)

January 2025

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.

View Article and Find Full Text PDF

Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!