Osteogenic potential of bone marrow stromal cells on smooth, roughened, and tricalcium phosphate-modified titanium alloy surfaces.

Int J Oral Maxillofac Implants

Mineralised Tissue Group, Tissue Engineering and Reparative Dentistry, School of Dentistry, Cardiff University, Heath Park, Cardiff, United Kingdom.

Published: June 2013

Purpose: This study investigated the influence of smooth, roughened, and tricalcium phosphate (TCP)-coated roughened titanium-aluminum-vanadium (Ti-6Al-4V) surfaces on the osteogenic potential of rat bone marrow stromal cells (BMSCs).

Methods: Machined smooth (MS), grit-blasted roughened (MT), and roughened surfaces coated with TCP were prepared from Ti-6Al-4V. Plastic surfaces were used as a control. Surface topography and chemical characteristics were determined. Cell attachment, morphology, proliferation, and temporal expression of mRNA and protein markers associated with bone healing were examined.

Results: Roughness values were 0.09 ± 0.02 Μm, 2.71 ± 0.24 Μm, and 6.08 ± 0.62 Μm for MS, MT, and TCP, respectively. Cell attachment was similar on all surfaces. The cell expansion phase occurred during days 1 to 3 on MS surfaces and days 3 to 5 on MT and TCP surfaces. The earlier onset of differentiation on MS surfaces versus MT and TCP surfaces was evidenced by: high mRNA expression peak for Runx2 at day 5 on MS (day 7 on MT and TCP); higher mRNA expression for osteopontin, osteonectin, bone sialoprotein (BSP), osteocalcin, type 1 collagen, and alkaline phosphatase over days 5 to 12 on MS compared with MT and TCP; higher levels of bone matrix proteins on MS compared with MT, with only BSP detected on TCP; cell morphology consistent with descriptions of differentiating osteoblasts apparent at day 5 on MS and absent on MT. Compared to plastic surfaces, Ti-6Al-4V appeared to suppress mRNA for interleukin 1Β, tumor necrosis factor alpha, and peroxisome proliferator-activated receptor gamma expression and upregulate osteoprotegerin.

Conclusions: Cell expansion was delayed on roughened Ti-6Al-4V surfaces, impeding osteoblast differentiation and bone matrix synthesis. These results disagree with a number of published studies examining pure titanium. Ti-6Al-4V surfaces appear to assist in the resolution of proinflammatory cytokines and inhibit BMSC differentiation toward adipocytes.

Download full-text PDF

Source

Publication Analysis

Top Keywords

surfaces
12
ti-6al-4v surfaces
12
osteogenic potential
8
bone marrow
8
marrow stromal
8
stromal cells
8
smooth roughened
8
roughened tricalcium
8
plastic surfaces
8
cell attachment
8

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.

View Article and Find Full Text PDF

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

β-secretase (BACE1) is instrumental in amyloid-β (Aβ) production, with overexpression noted in Alzheimer's disease (AD) neuropathology. The interaction of Aβ with the receptor for advanced glycation endproducts (RAGE) facilitates cerebral uptake of Aβ and exacerbates its neurotoxicity and neuroinflammation, further augmenting BACE1 expression. Given the limitations of previous BACE1 inhibition efforts, the study explores reducing BACE1 expression to mitigate AD pathology.

View Article and Find Full Text PDF

We have developed a novel S-scheme mechanism to expand the photoresponse range of BiSiO. This study reports the successful creation of a CN/BS heterojunction photocatalyst, which is composed of g-CN and BiSiO. The synthesis was achieved through a simple two-step procedure, involving hydrothermal treatment and subsequent calcination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!