In this paper we demonstrate that retrograde signaling via astrocytes may underpin self-repair in the brain. Faults manifest themselves in silent or near silent neurons caused by low transmission probability (PR) synapses; the enhancement of the transmission PR of a healthy neighboring synapse by retrograde signaling can enhance the transmission PR of the "faulty" synapse (repair). Our model of self-repair is based on recent research showing that retrograde signaling via astrocytes can increase the PR of neurotransmitter release at damaged or low transmission PR synapses. The model demonstrates that astrocytes are capable of bidirectional communication with neurons which leads to modulation of synaptic activity, and that indirect signaling through retrograde messengers such as endocannabinoids leads to modulation of synaptic transmission PR. Although our model operates at the level of cells, it provides a new research direction on brain-like self-repair which can be extended to networks of astrocytes and neurons. It also provides a biologically inspired basis for developing highly adaptive, distributed computing systems that can, at fine levels of granularity, fault detect, diagnose and self-repair autonomously, without the traditional constraint of a central fault detect/repair unit.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3458420 | PMC |
http://dx.doi.org/10.3389/fncom.2012.00076 | DOI Listing |
J Korean Neurosurg Soc
January 2025
Department of Neurosurgery, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea.
Objective: The leptomeningeal ivy sign is a distinctive finding of moyamoya disease (MMD), characterized by a linear high signal intensity along the cortical sulci on contrast-enhanced T1 magnetic resonance imaging (MRI) and fluid-attenuated inversion-recovery MRI. We recently identified a similar linear enhancement along the cortical sulci using gadolinium-enhanced vessel wall MRI (VWMR) in patients with MMD. The aim of this study was to introduce the concept of the "VWMR ivy sign (VIS)".
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
Chronic kidney disease (CKD) is a conceivable new risk factor for cognitive disorder and dementia. Uremic toxicity, oxidative stress, and peripheral-central inflammation have been considered important mediators of CKD-induced nervous disorders. Nitric oxide (NO) is a retrograde neurotransmitter in synapses, and has vital roles in intracellular signaling in neurons.
View Article and Find Full Text PDFJ Orthop Trauma
January 2025
Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN.
Objective: To evaluate mechanical failure rates of retrograde femoral nails in the treatment of distal femur fractures.
Methods: Design: Retrospective chart review.
Setting: Urban Academic Level 1 Trauma Center.
Proc Natl Acad Sci U S A
January 2025
Instituto de Neurociencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2340000, Chile.
BK channels can control neuronal function, but their functional relevance in activity-dependent changes of synaptic function remains elusive. Here, we report that repetitive low-frequency stimulation activates BK channels through 12(S)HPETE, an arachidonic acid metabolite, produced downstream of postsynaptic metabotropic glutamate receptors (mGluRs) to trigger long-term depression (LTD) at CA3-CA1 synapses in hippocampal slices from P7-P10 mice. Activation of BK channels is subunit specific, as paxilline but not iberiotoxin blocked mGluR-LTD.
View Article and Find Full Text PDFLife (Basel)
December 2024
Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
In light of the increasingly adverse environmental conditions and the concomitant challenges to the survival of important crops, there is a pressing need to enhance the resilience of pepper seedlings to extreme weather. Carotenoid plays an important role in plants' resistance to abiotic stress. Nevertheless, the relationship between carotenoid biosynthesis and sweet pepper seedlings' resistance to different abiotic stresses remains uncertain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!