Stochastic facilitation of artificial tactile sensation in primates.

J Neurosci

Department of Biomedical Engineering, Center for Neuroengineering, Duke University, Durham, North Carolina 27710, USA.

Published: October 2012

Artificial sensation via electrical or optical stimulation of brain sensory areas offers a promising treatment for sensory deficits. For a brain-machine-brain interface, such artificial sensation conveys feedback signals from a sensorized prosthetic limb. The ways neural tissue can be stimulated to evoke artificial sensation and the parameter space of such stimulation, however, remain largely unexplored. Here we investigated whether stochastic facilitation (SF) could enhance an artificial tactile sensation produced by intracortical microstimulation (ICMS). Two rhesus monkeys learned to use a virtual hand, which they moved with a joystick, to explore virtual objects on a computer screen. They sought an object associated with a particular artificial texture (AT) signaled by a periodic ICMS pattern delivered to the primary somatosensory cortex (S1) through a pair of implanted electrodes. During each behavioral trial, aperiodic ICMS (i.e., noise) of randomly chosen amplitude was delivered to S1 through another electrode pair implanted 1 mm away from the site of AT delivery. Whereas high-amplitude noise worsened AT detection, moderate noise clearly improved the detection of weak signals, significantly raising the proportion of correct trials. These findings suggest that SF could be used to enhance prosthetic sensation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502008PMC
http://dx.doi.org/10.1523/JNEUROSCI.3115-12.2012DOI Listing

Publication Analysis

Top Keywords

artificial sensation
12
stochastic facilitation
8
artificial tactile
8
tactile sensation
8
pair implanted
8
artificial
6
sensation
6
facilitation artificial
4
sensation primates
4
primates artificial
4

Similar Publications

The food flavor science, traditionally reliant on experimental methods, is now entering a promising era with the help of artificial intelligence (AI). By integrating existing technologies with AI, researchers can explore and develop new flavor substances in a digital environment, saving time and resources. More and more research will use AI and big data to enhance product flavor, improve product quality, meet consumer needs, and drive the industry toward a smarter and more sustainable future.

View Article and Find Full Text PDF

Exploring the synergistic effect of Lactiplantibacillus plantarum 1-24-LJ and lipase on improving Quality, Flavor, and safety of Suanzharou.

Food Res Int

January 2025

SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-construction for Deep Processing, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning, 116034, China. Electronic address:

The aim of this study was to investigate the effects of the addition of Lactiplantibacillus plantarum 1-24-LJ and lipase on physicochemical indexes, nutrition, and flavour substances during Suanzharou's fermentation. Individually, the lipase supplementation expedited the synthesis of organic acids and free fatty acids, thus rapidly acidifying the fermentation environment. Compared to C (8.

View Article and Find Full Text PDF

Virtual reality for multiple sclerosis rehabilitation.

Cochrane Database Syst Rev

January 2025

Faculty of Physical Education and Physiotherapy, Rehabilitation Research Group, Vrije Universiteit Brussel, Brussels, Belgium.

Background: Multiple sclerosis (MS) is the most common neurological disease in young adults. Virtual reality (VR) offers a promising rehabilitation tool by providing controllable, personalised environments for safe, adaptable and engaging training. Virtual reality can be tailored to patients' motor and cognitive skills, enhancing motivation through exciting scenarios and feedback.

View Article and Find Full Text PDF

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

Background: Despite advancements in prosthetic designs and surgical techniques, patellar dislocation remains a rare but significant complication following total knee arthroplasty, with an incidence ranging between 0.15% and 0.5%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!