The epithelial-mesenchymal transition (EMT) is a fundamental process governing morphogenesis in multicellular organisms and has recently been implicated in promoting carcinoma invasion and metastasis. Besides their therapeutic effects, accumulating evidences suggest that chemotherapeutic agents also induced EMT and enhanced the malignancy of treated cancer cells; however, the mechanism(s) still remains unclear. Here, we investigated the role of β-catenin signaling in doxorubicin (Dox)-induced EMT in human gastric cancer cell line BGC-823. We found that the transient treatment of Dox induced EMT and enhanced the in vitro migration ability of cancer cells. We also found that β-catenin signaling was activated upon Dox treatment. Inhibition of β-catenin by indomethacin (Indo) or siRNA suppressed Dox-induced EMT and decreased cancer cell migration ability. Our results showed that β-catenin signaling was critical to Dox-induced EMT. Indo and other β-catenin inhibitors may have a potential implication in prevention of gastric cancer metastasis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13277-012-0548-3DOI Listing

Publication Analysis

Top Keywords

β-catenin signaling
16
gastric cancer
12
cancer cell
12
dox-induced emt
12
signaling critical
8
epithelial-mesenchymal transition
8
induced emt
8
emt enhanced
8
cancer cells
8
migration ability
8

Similar Publications

The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.

View Article and Find Full Text PDF

Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins.

View Article and Find Full Text PDF

Loz1 is a zinc-responsive transcription factor in fission yeast that maintains cellular zinc homeostasis by repressing the expression of genes required for zinc uptake in high zinc conditions. Previous deletion analysis of Loz1 found a region containing two tandem CH zinc-fingers and an upstream "accessory domain" rich in histidine, lysine, and arginine residues to be sufficient for zinc-dependent DNA binding and gene repression. Here we report unexpected biophysical properties of this pair of seemingly classical CH zinc fingers.

View Article and Find Full Text PDF

TBCK (TBC1 Domain-Containing Kinase) encodes a protein playing a role in actin organization and cell growth/proliferation via the mTOR signaling pathway. Deleterious biallelic TBCK variants cause Hypotonia, infantile, with psychomotor retardation and characteristic facies 3. We report on three affected sibs, also displaying cardiac malformations.

View Article and Find Full Text PDF

Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!