Introduction: This study of photocatalytic degradation of wastewater was carried out in alveolar cell β-SiC foam-structured photocatalytic reactors working in a recirculation mode. The immobilization of TiO2 on β-SiC foams was efficiently obtained through a sol-gel technique in acidic conditions.
Discussion: In order to optimize degradation yields obtained by the foam-structured prototype reactor for the photocatalytic water treatment, the operating conditions of the photoreactor have been investigated and the efficiency of the process was evaluated by measuring the photocatalytic degradation of Diuron (3-(3,4-dichlorophenyl)-1,1-dimethyl-urea)) under UV irradiation. Kinetic studies were carried out by investigating the influence of different parameters controlling the reaction (TiO2 loading and β-SiC foam cell size). The ageing of TiO2/β-SiC foam photocatalytic materials and the mineralization (TOC, Cl-, NO3- and NH4+) of Diuron were investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-011-0719-6 | DOI Listing |
Anal Chem
January 2025
Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China.
In this study, a sensitive diagnosis and spontaneously photocatalytic therapy of cancer based on chemiluminescence (CL) and nanozyme was studied. Briefly, carbon nitride-supported copper nanoparticles (CuCNs) loaded with luminol (CuCN-L) were utilized to develop a microneedle patch (CuCN-L/MN). The CuCN-L probe could target overexpressed HO in the TME and actively emit CL to achieve cancer cell imaging for diagnosis.
View Article and Find Full Text PDFRSC Adv
January 2025
Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City No. 12 Nguyen Van Bao Street Ward 1 Go Vap District Ho Chi Minh City Vietnam
This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants () value of BiBTC, GO@BiBTC MOF composites were 0.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
The Second Hospital of Dalian Medical University, Dalian, 116023, China.
The intricate morphology, physicochemical properties, and interacting proteins of lipid droplets (LDs) are associated with cell metabolism and related diseases. To uncover these layers of information, a solvatochromic and photosensitized LDs-targeted probe based on the furan-based D-D-π-A scaffold is developed to offer the following integrated functions. First, the turn-on fluorescence of the probe upon selectively binding to LDs allows for direct visualization of their location and morphology.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
Heterogeneity engineering provides an effective route to manipulate the chemical and physical properties of covalent organic frameworks (COFs) but is still under development for their single-crystal form. Here, we report the strategy based on a combination of the template-assisted modulated synthesis with a one-pot crystallization-reduction method to directly construct ordered macro-microporous single crystals of an amine-linked three-dimensional (3D) COF (OM-COF-300-SR). In this strategy, the colloidal crystal-templating synthesis not only assists the formation of ordered macropores but also greatly facilitates the in situ conversion of linkages (from imine to amine) in the COF-300 single crystals.
View Article and Find Full Text PDFRSC Adv
January 2025
LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
Additive Manufacturing (AM) was evaluated as a promising technology for constructing photocatalytic reactors due to its inherent ability to produce complex geometries with high precision and customization. In this work, a 3D structure was designed to achieve a good light distribution inside a cylindrical batch reactor and printed using the stereolithography (SLA) technique. A hybrid material composed of a commercial photoreactive resin (Formlabs Clear V4) and the benchmark photocatalyst TiO P25 Evonik (1 wt%) was prepared and characterized by scanning electron microscopy (SEM) and rheological and mechanical methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!