The necrotrophic fungal pathogen Alternaria alternata causes brown spot diseases in many citrus cultivars. The FUS3 and SLT2 mitogen-activated protein kinases (MAPK)-mediated signaling pathways have been shown to be required for conidiation. Exogenous application of cAMP to this fungal pathogen decreased conidia formation considerably. This study determined whether a cAMP-activated protein kinase A (PKA) is required for conidiation. Using loss-of-function mutations in PKA catalytic and regulatory subunit-coding genes, we demonstrated that PKA negatively regulates conidiation. Fungal mutants lacking PKA catalytic subunit gene (PKA ( cat )) reduced growth, lacked detectable PKA activity, and produced higher amounts of conidia compared to wild-type. Introduction of a functional copy of PKA ( cat ) into a null mutant partially restored PKA activity and produced wild-type level of conidia. In contrast, fungi lacking PKA regulatory subunit gene (PKA ( reg )) produced detectable PKA activity, exhibited severe growth reduction, formed swelling hyphal segments, and produced no mature conidia. Introduction of the PKA ( reg ) gene to a regulatory subunit mutant restored all phenotypes to wild type. PKA ( reg )-null mutants induced fewer necrotic lesions on citrus compared to wild-type, whereas PKA ( cat ) mutant displayed wild-type virulence. Overall, our studies indicate that PKA and FUS3-mediated signaling pathways apparently have very different roles in the regulation of conidia production and A. alternata pathogenesis in citrus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-012-1182-3 | DOI Listing |
J Pharm Sci
January 2025
Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, 66047, USA. Electronic address:
By evaluating the stability profiles of each component of a vaccine candidate (antigens, adjuvants), formulation conditions to mitigate vaccine instability can be identified. In this work, two recombinant Cytomegalovirus (CMV) glycoprotein antigens (gB, Pentamer) were formulated with SPA14, a novel liposome-based adjuvant system containing a synthetic TLR4 agonist (E6020) and a saponin (QS21). Analytical characterization and accelerated stability studies were performed with the two CMV antigens, formulated with and without SPA14, under various conditions (temperature, pH, excipients).
View Article and Find Full Text PDFCells
January 2025
Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.
View Article and Find Full Text PDFBehav Brain Res
January 2025
Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD 57007, USA. Electronic address:
The astroglial glutamate transporter in the hippocampus and anterior cingulate cortex (ACC) is critically involved in chronic pain-induced cognitive and psychiatric abnormalities. We have previously reported that LDN-212320, a glutamate transporter-1 (GLT-1) activator, attenuates complete Freund's adjuvant (CFA)-induced acute and chronic nociceptive pain. However, the cellular and molecular mechanisms underlying GLT-1 modulation in the hippocampus and ACC during chronic pain-induced cognitive deficit-like and anxiety-like behaviors remain unknown.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, D-07743 Jena, Germany; Jena Center for Soft Matters (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany. Electronic address:
Nanomedicine, particularly gene delivery, holds immense potential and offers promising therapeutic options. Non-viral systems gained attention due to their binding capacity, stability and scalability. Among these, natural polysaccharides, such as pullulan, are advantageous in terms of sustainability, biocompatibility and potential degradability.
View Article and Find Full Text PDFFood Chem
January 2025
School of Public Health, Hebei Key Laboratory of Occupational Health and Safety for Coal Industry, North China University of Science and Technology, Tangshan 063210, Hebei, China. Electronic address:
Effective and convenient QuEChERS of lipophilic pesticides with wide pK range from strongly pigment-rich food samples remains a great challenge. Here, a ZIF-67 derived magnetic nanoporous carbon (Co@MPC) was firstly proposed for modified QuEChERS of carbamate pesticides (pK 4.3-12.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!