Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510129 | PMC |
http://dx.doi.org/10.1104/pp.112.204149 | DOI Listing |
Environ Microbiol
January 2025
Department of Biology, University of Oxford, Oxford, UK.
Rhizobia and legumes form a symbiotic relationship resulting in the formation of root structures known as nodules, where bacteria fix nitrogen. Legumes release flavonoids that are detected by the rhizobial nodulation (Nod) protein NodD, initiating the transcriptional activation of nod genes and subsequent synthesis of Nod Factors (NFs). NFs then induce various legume responses essential for this symbiosis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Food Security and Agricultural Development, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
Soil salinity is a major global challenge affecting agricultural productivity and food security. This study explores innovative strategies to improve salt tolerance in soybean (), a crucial crop in the global food supply. This study investigates the synergistic effects of S-nitroso glutathione (GSNO) and silicon on enhancing salt tolerance in soybean ().
View Article and Find Full Text PDFInt J Mol Sci
January 2025
All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia.
It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
Background/objectives: The balanced regulation of innate immunity plays essential roles in rhizobial infection and the establishment and maintenance of symbiosis. The evolutionarily conserved cell death suppressor Bax inhibitor-1 plays dual roles in nodule symbiosis, providing a valuable clue in balancing immunity and symbiosis, while it remains largely unexplored in the legume .
Methods/results: In the present report, the gene family of was identified and characterized.
Biomolecules
January 2025
Department of Crop Production, Poltava State Agrarian University, Skovoroda St., 1/3, 36000 Poltava, Ukraine.
Legumes play a pivotal role in addressing global challenges of food and nutrition security by offering a sustainable source of protein and bioactive compounds. The capacity of legumes to establish symbiotic relationships with rhizobia bacteria enables biological nitrogen fixation (BNF), reducing the dependence on chemical fertilizers while enhancing soil health. However, the efficiency of this symbiosis is significantly influenced by environmental factors, such as soil acidity, salinity, temperature, moisture content, light intensity, and nutrient availability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!