Copper (Cu), iron (Fe), and thyroid hormone (TH) deficiencies produce similar defects in late brain development including hypomyelination of axons and impaired synapse formation and function, suggesting that these micronutrient deficiencies share a common mechanism contributing to these derangements. We previously demonstrated that fetal/neonatal Cu and Fe deficiencies lower circulating TH concentrations in neonatal rats. Fe deficiency also reduces whole-brain T(3) content, suggesting impaired TH action in the developing Fe-deficient brain. We hypothesized that fetal/neonatal Cu and Fe deficiencies will produce mild or moderate TH deficiencies and will impair TH-responsive gene expression in the neonatal cerebral cortex and hippocampus. To test this hypothesis, we rendered pregnant Sprague Dawley rats Cu-, Fe-, or TH-deficient from early gestation through postnatal d 10 (P10). Mild and moderate TH deficiencies were induced by 1 and 3 ppm propylthiouracil treatment, respectively. Cu deficiency did not significantly alter serum or tissue TH concentrations or TH-responsive brain mRNA expression. Fe deficiency significantly lowered P10 serum total T(3) (45%), serum total T(4) (52%), whole brain T(3) (14%), and hippocampal T(3) (18%) concentrations, producing a mild TH deficiency similar to 1 ppm propylthiouracil treatment. Fe deficiency lowered Pvalb, Enpp6, and Mbp mRNA levels in the P10 hippocampus. Fe deficiency also altered Hairless, Dbm, and Dio2 mRNA levels in the P10 cerebral cortex. These results suggest that some of the brain defects associated with Fe deficiency may be mediated through altered thyroidal status and the concomitant alterations in TH-responsive gene transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3473211PMC
http://dx.doi.org/10.1210/en.2012-1067DOI Listing

Publication Analysis

Top Keywords

mrna levels
12
cerebral cortex
12
deficiency
8
deficiency reduces
8
fetal/neonatal deficiencies
8
deficiencies will
8
mild moderate
8
moderate deficiencies
8
th-responsive gene
8
ppm propylthiouracil
8

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Combined exercise-induced modulation of Notch pathway and muscle quality in senescence-accelerated mice.

Pflugers Arch

January 2025

School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, São Paulo, 14040-907, Brazil.

The Notch signaling pathway is crucial for skeletal muscle development, regeneration, inflammation, and aging. This study investigated the association between interleukin-10 (IL-10) and the Notch pathway in C2C12 cells, as well as explored the effects of combined endurance and resistance exercise on the Notch and autophagy pathways in the skeletal muscle of senescence-accelerated mouse-resistant 1 Sedentary (SAMR1 CT), SAMR1 exercised (SAMR1 EX), senescence-accelerated prone mouse 8 Sedentary (SAMP8 CT), and SAMP8 exercised (SAMP8 EX). C2C12 myoblasts were transfected with siIL-10.

View Article and Find Full Text PDF

Accurate identification and quantification of 5-hydroxymethylcytosine (5hmC) can help elucidate its function in gene expression and disease pathogenesis. Current 5hmC analysis methods still present challenges, especially for clinical applications, such as having a risk of false-positive results and a lack of sufficient sensitivity. Herein, a 5hmC quantification method for fragment-specific DNA sequences with extreme specificity, high sensitivity, and clinical applicability was established using a quantitative real-time PCR (qPCR)-based workflow through the combination of enzymatic digestion and biological deamination strategy (EDD-5hmC assay).

View Article and Find Full Text PDF

Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20.

Mol Cell Biol

January 2025

Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA.

Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased.

View Article and Find Full Text PDF

Single-cell sequencing of lineage negative (Lin-) cells from patients with myelodysplastic syndromes (MDS) revealed a reduction in ferritin heavy chain 1 (FTH1) levels, yet the significance of this decrease in FTH1 in the pathophysiology of MDS remains unclear. In this study, we evaluated the role of FTH1 in patients with MDS. The mRNA expression of FTH1 in GlycoA nucleated erythrocytes from MDS patients was significantly lower than that in control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!