This research used the cDNA-AFLP technique to identify differentially expressed transcript-derived fragments (TDFs) in the apical tips of chrysanthemum induced by different photoperiods. Of the 3,152 TDFs screened by 64 primer recombinations, 861 were found to be differentially expressed, with 597 up-regulated and 264 down-regulated. We successfully cloned, sequenced, and analyzed the homologies of 57 TDFs. We found homologies for 37 of them in the NCBI: 31 displayed homology to genes with known functions, 3 to genes with unknown function, and 3 showed no matches. Functional analysis indicated that 34 TDFs participated in seven processes: transcription regulation, signal transduction, substance and energy metabolism, differentiation and development, protein degradation and synthesis, stress responses, and unclassified protein. Semi-quantitative RT-PCR analysis with selected transcripts of four genes related to floral development indicated that they all were expressed or up-regulated under short-day conditions. This was supported by analysis of cDNA-AFLP.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10528-012-9541-1DOI Listing

Publication Analysis

Top Keywords

genes floral
8
floral development
8
differentially expressed
8
transcriptome analysis
4
analysis reveals
4
genes
4
reveals genes
4
development chrysanthemum
4
chrysanthemum responsive
4
responsive photoperiods
4

Similar Publications

Gibberellin-3 induced dormancy and suppression of flower bud formation in pitaya (Hylocereus polyrhizus).

BMC Plant Biol

January 2025

Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China.

Background: Flowering is a complex, finely regulated process involving multiple phytohormones and transcription factors. However, flowering regulation in pitaya (Hylocereus polyrhizus) remains largely unexamined. This study addresses this gap by investigating gibberellin-3 (GA3) effects on flower bud (FB) development in pitaya.

View Article and Find Full Text PDF

In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. (. ) is a traditional Chinese medicinal plant.

View Article and Find Full Text PDF

Glume-opening of thermosensitive genic male sterile (TGMS) rice ( L.) lines after anthesis is a serious problem that significantly reduces the yield and quality of hybrid seeds. However, the molecular mechanisms regulating the opening and closing of rice glumes remain largely unclear.

View Article and Find Full Text PDF

Translating biological knowledge from Arabidopsis to crop species is important to advance agriculture and secure food production in the face of dwindling fertilizer resources and biotic and abiotic stresses. However, it is often not trivial to identify functional homologs (orthologs) of Arabidopsis genes in crops. Combining sequence and expression data can improve the correct prediction of orthologs.

View Article and Find Full Text PDF

The complex gene regulatory landscape underlying early flower development in Arabidopsis has been extensively studied through transcriptome profiling, and gene networks controlling floral organ development have been derived from the analyses of genome wide binding of key transcription factors. In contrast, the dynamic nature of the proteome during the flower development process is much less understood. In this study, we characterized the floral proteome at different stages during early flower development and correlated it with unbiased transcript expression data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!