A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-wide identification of rice class I metallothionein gene: tissue expression patterns and induction in response to heavy metal stress. | LitMetric

Metallothioneins (MTs) are members of a family of cysteine-rich low molecular weight polypeptides which play an important role in heavy metal detoxification and homeostasis of intracellular metal ions in plant. Though MT genes from some selected plants have been characterized with respect to their protein sequences, kinetic properties and tissue-specific localization, no detailed study has been carried out in rice. Here, we present genome-wide identification, structural and expression analyses of rice MT gene family. Our analysis suggests presence of 11 class I MT genes in rice genome (Release 7 of the MSU Rice Genome Annotation Project) which are differentially expressed during growth and development, in various tissues and during biotic and abiotic stresses. Our analyses suggest that class I MT proteins in rice differ in tissue localization as well as in heavy metal coordination chemistry. We also suggest that some MTs have a predominant role in detoxification of As (V) in arsenic-tolerant rice cultivars. Our analysis suggests that apart from transcriptional regulation, post-transcriptional alternative splicing in some members of this family takes place during growth and development, in various tissues and during biotic and abiotic stresses.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-012-0297-9DOI Listing

Publication Analysis

Top Keywords

heavy metal
12
genome-wide identification
8
members family
8
analysis suggests
8
rice genome
8
growth development
8
development tissues
8
tissues biotic
8
biotic abiotic
8
abiotic stresses
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!