We identified ergothionase, which catalyzes conversion of ergothioneine to thiolurocanic acid and trimethylamine, in a newly isolated ergothioneine-utilizing strain, Burkholderia sp. HME13. The enzyme was purified and its N-terminal amino acid sequence was determined. Based on the amino acid sequence, the gene encoding the enzyme was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity and characterized. The enzyme consisted of four identical 55-kDa subunits. The enzyme showed maximum activity at pH 8.0 and 65 °C and was stable between pH 7.0 and pH 10.0 and up to 60 °C. The enzyme acted on ergothioneine (K m: 19 μM, V max: 270 μmol/min/mg), but not D-histidine, L-histidine, D-tyrosine, L-tyrosine, D-phenylalanine, or L-phenylalanine. The enzyme was activated by BaCl2 and strongly inhibited by CuSO4, ZnSO4, and HgCl2. The amino acid sequence of ergothionase showed 23 % similarity to histidine ammonia-lyase (HAL) from Pseudomonas putida and 17 % similarity to phenylalanine ammonia-lyase (PAL) from parsley. However, the tripeptide sequence, Ala-Ser-Gly, which is important for catalysis in both HAL and PAL, was not conserved in ergothionase. The application of ergothionase for the quantification of ergothioneine contained in practical food and blood samples was investigated by performing a recovery test. Satisfactory recovery data (98.7-104 %) were obtained when ergothioneine was added to extract of tamogitake and hemolysis blood.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-012-4442-0 | DOI Listing |
BMC Plant Biol
January 2025
Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates.
This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).
View Article and Find Full Text PDFSemin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFPituitary
January 2025
Departments of Endocrinology, Diabetology and Metabolism, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland.
Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.
View Article and Find Full Text PDFMetabolomics
January 2025
Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.
View Article and Find Full Text PDFMetabolomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!