A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-grating confocal-rainbow volume holographic imaging system designs for high depth resolution. | LitMetric

Confocal microscopy rejects out-of-focus light from the object by scanning a pinhole through the image and reconstructing the image point by point. Volume holographic imaging systems with bright-field illumination have been proposed as an alternative to conventional confocal-type microscopes that does not require scanning of a pinhole or a slit. However, due to wavelength-position degeneracy of the hologram, the high Bragg selectivity of the volume hologram is not utilized and system performance is not optimized. Confocal-rainbow illumination has been proposed as a means to remove the degeneracy and improve optical sectioning in these systems. In prior work, two versions of this system were illustrated: the first version had a separate illumination and imaging grating and the second used a single grating to disperse the incident light and to separate wavelengths in the imaging path. The initial illustration of the dual-grating system has limited depth resolution due to the low selectivity of the illumination grating. The initial illustration of the single-grating system has high depth resolution but does not allow optimization of the illumination path and requires high optical quality of the holographic filters. In this paper we consider the design and tolerance requirements of the dual-grating system for high depth resolution and demonstrate the results with an experimental system. An experimental system with two 1.8 mm thick planar holograms achieved a depth resolution of 7 μm with a field of view of 1.9 mm and a hologram dispersion matching tolerance of ±0.008°.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.51.006952DOI Listing

Publication Analysis

Top Keywords

depth resolution
20
high depth
12
volume holographic
8
holographic imaging
8
system
8
scanning pinhole
8
illumination proposed
8
initial illustration
8
dual-grating system
8
system high
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!