A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-propelled nanojets via template electrodeposition. | LitMetric

Self-propelled nanojets via template electrodeposition.

Nanoscale

Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.

Published: February 2013

In this paper, we present a rapid, high-yield, low-end and low-cost fabrication of nanojet motors using a template directed electrochemical deposition method. Using an electrochemical deposition method, the bubble-ejecting nanojets were grown within the alumina template, which is commercially available. These fabricated nanosized devices have typical dimensions of 300 nm (diameter) by 4.5 μm (length), and they are able to move in a hydrogen peroxide fuel solution with velocities up to approximately 40 body lengths per second. They are also capable of exhibiting various modes of movement such as straight, screw-like and circular motions, in a similar manner comparable to larger micro-sized jets. In addition, due to their small dimensions, the movements of these nanojets can be strongly influenced by colliding them with microbubbles. This highly parallel method which is of low-cost and requires the usage of low-end equipment that can be easily located in any laboratory opens up the doors for world-wide nanojet fabrication in the near future.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2nr31566aDOI Listing

Publication Analysis

Top Keywords

electrochemical deposition
8
deposition method
8
self-propelled nanojets
4
nanojets template
4
template electrodeposition
4
electrodeposition paper
4
paper rapid
4
rapid high-yield
4
high-yield low-end
4
low-end low-cost
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!