Well-dispersed Pd nanoparticles have been synthesized inside the mesoporosity of a silica monolith featuring hierarchical porosity of homogeneous interconnected macropores (4 microns) and mesopores (11 nm). These monoliths have been implemented as microreactors for selective hydrogenation reactions. Conversion and selectivity can be tuned by adjusting the flow rates of hydrogen and substrates. In the selective hydrogenation of cyclooctadiene, a conversion of 95% and a selectivity of 90% in the monohydrogenated product, constant over a period of 70 h, have been reached. These figures correspond to a productivity of 4.2 mmol s(-1) g(-1)(MonoSil) (or 0.32 mol s(-1) g(-1)(Pd)). In the stereoselective hydrogenation of 3-hexyn-1-ol a constant conversion of 85% was observed, with however moderate selectivity into the cis isomer, over a test period of 7 h. These results open the route to the synthesis of important chemicals and intermediates via safe and green processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2dt31690k | DOI Listing |
Biosens Bioelectron
December 2024
School of Pharmacy, Xi'an Medical University, Xi'an, 710021, China; Institute of Medicine, Xi'an Medical University, Xi'an, 710021, China. Electronic address:
In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India.
Designing catalysts for the selective reduction of CO, resulting in products having commercial value, is an important area of contemporary research. Several molecular catalysts have been reported to facilitate the reduction of CO (both electrochemical and photochemical) to yield 2e/2H electron-reduced products, CO and HCOOH, and selective reduction of CO beyond 2e/2H is rare. This is partly because the factors that control the selectivity of CO reduction beyond 2e are not yet understood.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Dr PDKV, Akola, Maharashtra, India.
Background: Changes in the temperature induction response are potential tools for the empirical assessment of plant cell tolerance. This technique is used to identify thermotolerant lines in field crops. In the present investigation, ten-day-old seedlings of six wheat genotypes released by Dr.
View Article and Find Full Text PDFTalanta
December 2024
School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, India. Electronic address:
The electrochemical biosensor has brought a paradigm shift in the field of sensing due to its fast response and easy operability. The performance of electrochemical sensors can be modified by coupling them with various metal oxides, nanomaterials, and nanocomposites. Hydrogen peroxide is a short-lived reactive oxygen species that plays a crucial role in various physiological and biological processes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!