Whole-genome duplication, or polyploidy, is common in many plant species and often leads to better adaptation to adverse environmental condition. However, little is known about the physiological and molecular determinants underlying adaptation. We examined the drought tolerance in diploid (2x) and autotetraploid (4x) clones of Rangpur lime (Citrus limonia) rootstocks grafted with 2x Valencia Delta sweet orange (Citrus sinensis) scions, named V/2xRL and V/4xRL, respectively. Physiological experiments to study root-shoot communication associated with gene expression studies in roots and leaves were performed. V/4xRL was much more tolerant to water deficit than V/2xRL. Gene expression analysis in leaves and roots showed that more genes related to the response to water stress were differentially expressed in V/2xRL than in V/4xRL. Prior to the stress, when comparing V/4xRL to V/2xRL, V/4xRL leaves had lower stomatal conductance and greater abscisic acid (ABA) content. In roots, ABA content was higher in V/4xRL and was associated to a greater expression of drought responsive genes, including CsNCED1, a pivotal regulatory gene of ABA biosynthesis. We conclude that tetraploidy modifies the expression of genes in Rangpur lime citrus roots to regulate long-distance ABA signalling and adaptation to stress.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.12021DOI Listing

Publication Analysis

Top Keywords

rangpur lime
12
v/2xrl v/4xrl
12
drought tolerance
8
abscisic acid
8
lime citrus
8
gene expression
8
aba content
8
v/4xrl
6
tetraploid rangpur
4
lime rootstock
4

Similar Publications

Evaluating citrus rootstocks is of paramount importance in determining their suitability for a certain region and promoting resilience in orchards by increasing the genetic pool, thereby potentially contributing to a more strategic establishment of new plantings. This long-term field study (2000-2013) aimed to evaluate different rootstocks for 'Swatow' mandarin grown at two locations (Paranavaí and Londrina) in the Brazilian subtropics. Nine rootstocks were evaluated, including 'Rangpur' lime, 'Swingle' citrumelo, 'Volkamer' lemon, 'Caipira DAC' sweet orange, 'Cleopatra' and 'Sunki' mandarins, 'Trifoliate' orange, 'Carrizo', and 'Fepagro C-13' citranges.

View Article and Find Full Text PDF

Unlabelled: The citrus yellow mosaic badnavirus (CMBV) is one of the most important viruses causing yellowing and declining in different species. The Coorg mandarin, pomelo and grapefruit showing the yellow mosaic disease symptoms were collected from different famers field during the survey. Further viral pathogenicity was confirmed through grafting on Rangpur lime as root stock.

View Article and Find Full Text PDF

EnvC Homolog Encoded by subsp. Is Necessary for Cell Division and Virulence.

Microorganisms

March 2024

Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil.

Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. subsp. (), the causal agent of citrus canker, encodes an M23 peptidase EnvC homolog.

View Article and Find Full Text PDF

Rootstocks affect the vulnerability to embolism and pit membrane thickness in Citrus scions.

Plant Cell Environ

August 2024

Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.

Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations.

View Article and Find Full Text PDF

Citrus fruit residues as alternative precursors to developing HO and CO activated carbons and its application for Cu(II) adsorption.

Environ Sci Pollut Res Int

May 2023

Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, 97105-900, Santa Maria, RS, Brazil.

Due to its toxicity, the presence of Cu(II) ions released in aquatic environments presents a serious threat to the environment and human health. In search of sustainable and low-cost alternatives, there are citrus fruit residues, which are generated in large quantities by the juice industries and can be used to produce activated carbons. Therefore, the physical route was investigated for producing activated carbons to reuse citrus wastes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!