AI Article Synopsis

  • Patients with renal failure have a weakened immune system, prompting research into the activation of tumor suppressor genes p53 and RB in their cells.
  • PBMCs from healthy individuals, CKD patients, and dialysis patients were cultured under various conditions to measure transcription levels of these genes.
  • Results showed that dialysis patients had higher transcription levels than the other groups, suggesting increased cellular senescence and reduced ability for these cells to proliferate in vitro.

Article Abstract

Patients suffering from renal failure exhibit an impaired immune system function. We wanted to investigate the transcription of the tumor suppressor genes p53 and RB to record, if these cells could be stimulated in vitro in order to divide, after the addition of antigenic and inflammatory factors. This expression was measured by real-time PCR in peripheral blood mononuclear cells (PBMCs) from three different groups: ten healthy individuals, ten patients with chronic kidney disease (CKD), and ten dialysis patients with end stage renal disease (ESRD). The transcription rate of these genes was also measured after the cultivation of PBMCs under four different conditions: just with the culture medium, with lipopolysaccharide (LPS), with C-reactive protein (CRP), and with lipoxin A(4) (LXA(4))-LPS. Our results show that in most cases after the cultivation with additives, the transcription levels were higher in dialysis patients compared to those of the other two groups. Our findings serve as indications of cellular senescence on a molecular level, while it seems that these cells are less easily stimulated in vitro in order to duplicate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461626PMC
http://dx.doi.org/10.1155/2012/154397DOI Listing

Publication Analysis

Top Keywords

transcription tumor
8
tumor suppressor
8
suppressor genes
8
genes p53
8
patients chronic
8
chronic kidney
8
kidney disease
8
stimulated vitro
8
vitro order
8
dialysis patients
8

Similar Publications

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression.

View Article and Find Full Text PDF

Tandem duplications (TDs) in exons of upstream binding transcription factor (UBTF-TD) are a rare recurrent alteration in pediatric and adult acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS)/neoplasm. Although recently identified, AML with UBTF-TD is now considered a distinct subtype of AML. To further our understanding of myeloid neoplasms with UBTF-TD, we analyzed clinical, morphologic, and immunophenotypic characteristics of 27 pediatric patients with UBTF-TD-positive myeloid neoplasm, including 21 diagnosed as AML and 6 as MDS.

View Article and Find Full Text PDF

The activation of acid-sensing ion channel 1a (ASIC1a) in response to extracellular acidification leads to an increase in extracellular calcium influx, thereby exacerbating the degeneration of articular chondrocytes in rheumatoid arthritis (RA). It has been suggested that the inhibition of extracellular calcium influx could potentially impede chondrocyte ferroptosis. The cystine transporter, solute carrier family 7 member 11 (SLC7A11), is recognized as a key regulator of ferroptosis.

View Article and Find Full Text PDF

Purpose: To identify the epithelial cell centre regulatory transcription factors in the gastric cancer (GC) microenvironment and provide a new strategy for the diagnosis and treatment of GC.

Methods: The GC single-cell dataset was downloaded from the Gene Expression Omnibus (GEO) database. The regulatory mechanisms of transcription factors in both pan-cancer and GC microenvironments were analysed using the Cancer Genome Atlas (TGCA) database.

View Article and Find Full Text PDF

N6-methyladenosine is one of the most common and reversible post-transcriptional modifications in eukaryotes, and it is involved in alternative splicing and RNA transcription, degradation, and translation. It is well known that cancer cells acquire energy through metabolic reprogramming to exhibit various biological behaviors. Moreover, numerous studies have demonstrated that m6A induces cancer metabolic reprogramming by regulating the expression of core metabolic genes or by activating metabolic signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!