Hypertrophic pulmonary osteoarthropathy is a paraneoplastic syndrome seen in patients with lung cancer. This condition is characterized by the presence of digital clubbing, periosteal thickening, synovial thickening, and severe pain of the affected joints. Other syndromes exhibiting clubbing may or may not have underlying diseases causing their manifestation. An example is primary hypertrophic osteoarthropathy, or pachydermoperiostosis. While clubbing makes up part of the clinical picture in both hypertrophic pulmonary osteoarthropathy and hypertrophic osteoarthropathy, the latter has no underlying disease associations. Rather, primary hypertrophic osteoarthropathy is familial, idiopathic, and has a chronic course often beginning during puberty in males. Secondary hypertrophic osteoarthropathy is an acquired form of clubbing that is classically associated with lung disease. However, it has also been associated with diseases of the heart, liver, and intestines. In the setting of pulmonary malignancy, secondary hypertrophic osteoarthropathy is known as hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy has a distinct constellation of clinical findings that includes intractable pain often refractory to treatments other than resolution of the underlying disease process. The authors herein report a case of hypertrophic pulmonary osteoarthropathy masquerading as recurrent lower extremity cellulitis with chronic hand and foot pain in the setting of pulmonary malignancy that responded dramatically to intravenous pamidronate disodium (a bisphosphonate). Given the rarity of hypertrophic osteoarthropathy associated with lung cancer and the difficulty with pain management in such circumstances, the authors present the following case in which pain was mitigated by treatment with bisphosphonate therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3460662 | PMC |
Am J Med Genet A
January 2025
Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.
Primary Hypertrophic Osteoarthropathy (PHOAR1) is characterized by autosomal recessive loss of function variants in 15-hydroxyprostaglandin dehydrogenase (HPGD) leading to digital clubbing, periostosis, pachydermia, and severe hyperhidrosis. HPGD catalyzes the first step of prostaglandin E2 (PGE2) degradation. Selective COX-2 inhibitors have proved beneficial in adults, though it is unknown if early initiation of COX-2 inhibitors can alter the natural history of PHOAR1.
View Article and Find Full Text PDFJCEM Case Rep
December 2024
College of Medicine, Alfaisal University, Riyadh 11211, Saudi Arabia.
Hypertrophic osteoarthropathy (HOA: MIM 167100)) is classified into primary and secondary types. Primary HOA, also known as pachydermoperiostosis (PDP), is a rare genetic condition with distinct clinical features including digital clubbing, skin thickening, and periostosis. Secondary HOA often occurs as a paraneoplastic syndrome or is associated with systemic diseases.
View Article and Find Full Text PDFJ Clin Endocrinol Metab
November 2024
Department of Endocrinology, Key Laboratory of Endocrinology, National Commission of Health, State Key Laboratory for Complex, Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing 100730, China.
Context: Primary hypertrophic osteoarthropathy (PHO) is a rare genetic disorder characterized by skeletal and skin abnormalities. Genetic defects in prostaglandin E2 (PGE2) metabolism are known to cause PHO. However, the global impact and clinical significance of eicosanoids and oxylipins beyond PGE2 remain to be elucidated.
View Article and Find Full Text PDFGastroenterology
November 2024
Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu, China; Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!