New insights into [FeFe] hydrogenase activation and maturase function.

PLoS One

Department of Chemical Engineering, Stanford University, Stanford, California, USA.

Published: May 2013

[FeFe] hydrogenases catalyze H(2) production using the H-cluster, an iron-sulfur cofactor that contains carbon monoxide (CO), cyanide (CN(-)), and a dithiolate bridging ligand. The HydE, HydF, and HydG maturases assist in assembling the H-cluster and maturing hydrogenases into their catalytically active form. Characterization of these maturases and in vitro hydrogenase activation methods have helped elucidate steps in the H-cluster biosynthetic pathway such as the HydG-catalyzed generation of the CO and CN(-) ligands from free tyrosine. We have refined our cell-free approach for H-cluster synthesis and hydrogenase maturation by using separately expressed and purified HydE, HydF, and HydG. In this report, we illustrate how substrates and protein constituents influence hydrogenase activation, and for the first time, we show that each maturase can function catalytically during the maturation process. With precise control over the biomolecular components, we also provide evidence for H-cluster synthesis in the absence of either HydE or HydF, and we further show that hydrogenase activation can occur without exogenous tyrosine. Given these findings, we suggest a new reaction sequence for the [FeFe] hydrogenase maturation pathway. In our model, HydG independently synthesizes an iron-based compound with CO and CN(-) ligands that is a precursor to the H-cluster [2Fe](H) subunit, and which we have termed HydG-co. We further propose that HydF is a transferase that stabilizes HydG-co and also shuttles the complete [2Fe](H) subcluster to the hydrogenase, a translocation process that may be catalyzed by HydE. In summary, this report describes the first example of reconstructing the [FeFe] hydrogenase maturation pathway using purified maturases and subsequently utilizing this in vitro system to better understand the roles of HydE, HydF, and HydG.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3457958PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045850PLOS

Publication Analysis

Top Keywords

hydrogenase activation
16
hyde hydf
16
[fefe] hydrogenase
12
hydf hydg
12
hydrogenase maturation
12
hydrogenase
8
maturase function
8
cn- ligands
8
h-cluster synthesis
8
maturation pathway
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!