Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Aeroallergens are important causative factors of allergic diseases. Previous studies on aeroallergen sensitization rates investigated patients groups that had visited pediatric allergy clinics. In contrast, we investigated sensitization rates in a general population group of elementary school to teenage students in Incheon, Jeju, and Ulsan.
Methods: After obtaining parental consent, skin-prick tests were performed on 5,094 students between March and June 2010. Elementary school students were tested for 18 common aeroallergens, whereas middle and high school students were tested for 25 allergens. The 25 allergens included Dermatophagoides pteronyssinus, Dermatophagoides farinae, pollen (birch, alder, oak, Japanese cedar, pine, willow, elm, maple, Bermuda grass, timothy grass, rye grass, orchard grass, meadow grass, vernal grass, mugwort, Japanese hop, fat hen, ragweed, and plantain), and mold (Penicillatum, Aspergillus, Cladosporium, and Alternaria).
Results: The sensitization rates in descending order were 25.79% (D. pteronyssinus), 18.66% (D. farinae), 6.20% (mugwort), and 4.07% (willow) in Incheon; 33.35% (D. pteronyssinus), 24.78% (D. farinae), 15.36% (Japanese cedar), and 7.33% (Alternaria) in Jeju; and 32.79% (D. pteronyssinus), 30.27% (D. farinae), 10.13% (alder), and 8.68% (birch) in Ulsan. The dust mite allergen showed the highest sensitization rate among the 3 regions. The sensitization rate of tree pollen was the highest in Ulsan, whereas that of Alternaria was the highest in Jeju. The ragweed sensitization rates were 0.99% in Incheon, 1.07% in Jeju, and 0.81% in Ulsan.
Conclusion: The differences in sensitization rates were because of different regional environmental conditions and distinct surrounding biological species. Hence, subsequent nationwide studies are required.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3454574 | PMC |
http://dx.doi.org/10.3345/kjp.2012.55.9.322 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!