Treating infections with exogenous NO, which shows broad-spectrum antimicrobial activity, appears to be effective. Similar to NO biosynthesis, biosynthesis of α-1-acid glycoprotein variant A (AGPa), with a reduced cysteine (Cys149), increases markedly during inflammation and infection. We hypothesized that AGPa is an S-nitrosation target in acute-phase proteins. This study aimed to determine whether S-nitrosated AGPa (SNO-AGPa) may be the first compound of this novel antibacterial class against multidrug-resistant bacteria. AGPa was incubated with RAW264.7 cells activated by lipopolysaccharide and interferon-γ. The antimicrobial effects of SNO-AGPa were determined by measuring the turbidity of the bacterial suspensions in vitro and survival in a murine sepsis model in vivo, respectively. Results indicated that endogenous NO generated by activated RAW264.7 cells caused S-nitrosation of AGPa at Cys149. SNO-AGPa strongly inhibited growth of gram-positive, gram-negative, and multidrug-resistant bacteria and was an extremely potent bacteriostatic compound (IC(50): 10(-9) to 10(-6) M). The antibacterial mechanism of SNO-AGPa involves S-transnitrosation from SNO-AGPa to bacterial cells. Treatment with SNO-AGPa, but not with AGPa, markedly reduced bacterial counts in blood and liver in a mouse sepsis model. The sialyl residues of AGPa seem to suppress the antibacterial activity, since SNO-asialo AGPa was more potent than SNO-AGPa.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.12-217794DOI Listing

Publication Analysis

Top Keywords

α-1-acid glycoprotein
8
agpa
8
multidrug-resistant bacteria
8
raw2647 cells
8
sepsis model
8
sno-agpa
7
s-nitrosated α-1-acid
4
glycoprotein kills
4
kills drug-resistant
4
drug-resistant bacteria
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!