Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pumpkin (Cucurbita moschata) is a popular and nutritious vegetable consumed worldwide. The overall purpose of this study was to evaluate the effects of C. moschata fruit extract (CME) on anti-fatigue and ergogenic functions following physiological challenges. Male ICR mice from four groups designated vehicle, CME-50, CME-100 and CME-250, respectively (n = 8 per group in each test) were orally administered CME for 14 days at 0, 50, 100 and 250 mg/kg/day. The anti-fatigue activity and exercise performance were evaluated using exhaustive swimming time, forelimb grip strength, as well as levels of plasma lactate, ammonia, glucose, and creatine kinase after an acute swimming exercise. The resting muscular and hepatic glycogen was also analyzed after 14-day supplementation with CME. Trend analysis revealed that CME treatments increased grip strength. CME dose-dependently increased 5% body weight loaded swimming time, blood glucose, and muscular and hepatic glycogen levels. CME dose-dependently decreased plasma lactate and ammonia levels and creatine kinase activity after a 15-min swimming test. The mechanism was relevant to the increase in energy storage (as glycogen) and release (as blood glucose), and the decrease of plasma levels of lactate, ammonia, and creatine kinase. Therefore, CME may be potential for the pharmacological effect of anti-fatigue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268989 | PMC |
http://dx.doi.org/10.3390/molecules171011864 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!