Tetracapsuloides bryosalmonae and PKD in juvenile wild salmonids in Denmark.

Dis Aquat Organ

Department of Veterinary Disease Biology, Faculty of Life Sciences, University of Copenhagen, Denmark.

Published: October 2012

The myxozoan Tetracapsuloides bryosalmonae is the causative agent of proliferative kidney disease (PKD), a widespread and serious condition in salmonid fishes in Europe and North America. In Europe, PKD is primarily reported affecting farmed rainbow trout Oncorhynchus mykiss, but limited information exists on the occurrence and effects of T. bryosalmonae in wild salmonids. We investigated the presence of T. bryosalmonae in salmonids in Denmark and found that the parasite is common in the dominant wild Danish salmonid, brown trout Salmo trutta, and that it also appears in wild Atlantic salmon S. salar. Clinical signs of PKD were present in some brown trout, but in most cases the parasite was found through histology and/or PCR investigations of kidney tissue in fish that showed no signs of infection. Even though there was high similarity between internal transcribed spacer 1 (ITS1) sequences of T. bryosalmonae from wild brown trout, Atlantic salmon and farmed rainbow trout, a geographic pattern was indicated among T. bryosalmonae ITS1 phylotypes. None of the investigated streams were found free of T. bryosalmonae, but prevalence of the parasite was highly variable.

Download full-text PDF

Source
http://dx.doi.org/10.3354/dao02502DOI Listing

Publication Analysis

Top Keywords

brown trout
12
tetracapsuloides bryosalmonae
8
wild salmonids
8
salmonids denmark
8
farmed rainbow
8
rainbow trout
8
bryosalmonae wild
8
atlantic salmon
8
bryosalmonae
6
wild
5

Similar Publications

Rainbow trout () is a freshwater fish susceptible to chemical and microbial spoilage, limiting its shelf life. This study aimed to enhance and extend the rainbow trout fillets' shelf life stored at 4°C ± 1°C through an immersion treatment using ultrasound-assisted, defatted pine nut ( Wallich) extracts at concentrations of 1% and 2% (w/v), compared to the control group (0% pine nut). Evaluations were conducted at storage intervals of 0, 4, 8, 12, 16, and 20 days.

View Article and Find Full Text PDF

N-methyladenosine RNA methylation regulates microplastics-induced cell senescence in the rainbow trout liver.

Sci Total Environ

January 2025

School of Bioengineering and Technology, Tianshui Normal University, Gansu Province, PR China. Electronic address:

Microplastics are prevalent in aquatic ecosystems, impacting various forms of aquatic life, including fish. In this study, Rainbow trout (Oncorhynchus mykiss) were exposed to two concentrations of microplastics (0 and 500 μg/L) over a 14-day period, during which a comprehensive analysis was conducted to assess the liver accumulation of microplastics and their effects on oxidative stress, the liver response, and transcriptomics. Our findings indicated that microplastics significantly accumulated in the liver and activated the antioxidant system in fish by enhancing the activity of antioxidant enzymes.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.

View Article and Find Full Text PDF

Long dsRNA induces the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) to establish an antiviral state. When induced prophylactically, this antiviral state can reduce the severity and mortality of viral infections. One of the limiting factors in delivering dsRNA in animal models is the lack of an effective carrier that protects the dsRNA from degradation in the extracellular space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!