Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Fibroblast growth factor 2 (FGF2) and cyclic AMP (cAMP) play critical roles in controlling the differentiation of osteoblasts and mineralization of bone. We have previously reported that each of FGF2 and forskolin (FSK) alone increase transcription of the bone sialoprotein (BSP) gene, and that together (FGF/FSK) they upregulate BSP gene expression synergistically in rat osteoblast-like ROS 17/2.8 cells. However, other genes that are upregulated after stimulation by FGF2, FSK or FGF/FSK remain unclear. In the present study, we investigated candidate genes associated with mineralization after stimulation by FGF2, FSK and FGF/FSK in two kinds of osteoblast-like cells using microarray and real-time PCR. In ROS17/2.8 cells, FGF2 and FSK each increased the gene expression of c-FOS (7.2-fold and 10.7-fold, respectively). However, FGF/FSK did not induce c-FOS gene expression. FGF2 increased the expression of the dentin matrix protein 1 (DMP1, 129.8-fold) gene. In contrast, FGF/FSK increased the expression of the amphiregulin (AREG, 73-fold) gene maximally. In human osteoblast-like Saos2 cells, FGF2 increased the expression of the osteopontin (SPP1, 16.7-fold), interleukin-8 (IL8, 6.4-fold) and IL11 (4.8-fold) genes. FSK induced the expression of the IL6 (2.6-fold), IL11 (4.0-fold), chemokine ligand 13 (CXCL13, 2.8-fold) and bone morphogenetic protein 2 (BMP2, 2.5-fold) genes. These results suggest that FGF2 and FSK might be crucial regulators of mineralization and bone formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2334/josnusd.54.251 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!