Continuous visual properties explain neural responses to nonsymbolic number.

Psychophysiology

Laboratory of Experimental Psychology, University of Leuven, Leuven, Belgium.

Published: November 2012

Nonsymbolic number and its continuous visual properties are confounded in everyday life: When number changes, its continuous visual properties also change. It could therefore be efficient to rely on the visual properties to judge number. The current consensus, however, holds that number is processed independent of its visual properties. In this study, we pitched these two opposing theories against each other. We used electroencephalography to look at the components suggested to process number. The first experiment showed that number and visual cues affect the N1 and/or the P2 component. To disentangle number and visual processes, we controlled the visual cues in the second experiment. Now, no number-related effects were present. When the data were reorganized according to visual cue instead of number size, N1 and P2 effects emerged. These results argue against the idea that number is processed independent of its continuous visual variables.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1469-8986.2012.01461.xDOI Listing

Publication Analysis

Top Keywords

visual properties
20
continuous visual
16
number
10
visual
9
nonsymbolic number
8
number processed
8
processed independent
8
number visual
8
visual cues
8
properties
5

Similar Publications

: Since 2008, following clinical studies conducted on children that revealed the ability of the β-adrenergic antagonist propranolol to inhibit capillary growth in infantile hemangiomas (IHs), its oral administration has become the first-line treatment for IHs. Although oral propranolol therapy at a dosage of 3 mg/kg/die is effective, it can cause systemic adverse reactions. This therapy is not necessarily applicable to all patients.

View Article and Find Full Text PDF

Plant viruses have been known to alter host metabolites that influence the attraction of insect vectors. Our study investigated whether (CYVCV) infection influences vector attractiveness, focusing on the citrus whitefly, (Ashmead). Free choice assays showed that citrus whiteflies exhibited a preference for settling on CYVCV-infected lemon plants versus healthy control plants.

View Article and Find Full Text PDF

This study presents the fabrication of a sustainable flexible humidity sensor utilizing chitosan derived from mealworm biomass as the primary sensing material. The chitosan-based humidity sensor was fabricated by casting chitosan and polyvinyl alcohol (PVA) films with interdigitated copper electrodes, forming a laminate composite suitable for real-time, resistive-type humidity detection. Comprehensive characterization of the chitosan film was performed using Fourier-transform infrared (FTIR) spectroscopy, contact angle measurements, and tensile testing, which confirmed its chemical structure, wettability, and mechanical stability.

View Article and Find Full Text PDF

Color, Structure, and Thermal Stability of Alginate Films with Raspberry and/or Black Currant Seed Oils.

Molecules

January 2025

Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland.

In this study, biodegradable and active films based on sodium alginate incorporated with different concentrations of oils (25% and 50%) from fruit seeds were developed for potential applications in food packaging. The ultraviolet and visible (UV-VIS) spectra of raspberry seed oil (RSO) and black currant seed oil (BCSO) indicated differences in bioactive compounds, such as tocopherols, phenolic compounds, carotenoids, chlorophyll, and oxidative status (amounts of dienes, trienes, and tetraenes) of active components added to alginate films. The study encompassed the color, structure, and thermal stability analysis of sodium alginate films incorporated with RSO and BCSO and their mixtures.

View Article and Find Full Text PDF

Temperature-Responsive Hybrid Composite with Zero Temperature Coefficient of Resistance for Wearable Thermotherapy Pads.

Micromachines (Basel)

January 2025

Department of Mechanical Engineering, Soongsil University, 369 Sangdo-ro, Dongjak-Gu, Seoul 06978, Republic of Korea.

Carbon-based polymer composites are widely used in wearable devices due to their exceptional electrical conductivity and flexibility. However, their temperature-dependent resistance variations pose significant challenges to device safety and performance. A negative temperature coefficient (NTC) can lead to overcurrent risks, while a positive temperature coefficient (PTC) compromises accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!