ABSTRACT The mixed linear model (MLM) is an advanced statistical technique applicable to many fields of science. The multivariate MLM can be used to model longitudinal data, such as repeated ratings of disease resistance taken across time. In this study, using an example data set from a multi-environment trial of northern leaf blight disease on 290 maize lines with diverse levels of resistance, multivariate MLM analysis was performed and its utility was examined. In the population and environments tested, genotypic effects were highly correlated across disease ratings and followed an autoregressive pattern of correlation decay. Because longitudinal data are often converted to the univariate measure of area under the disease progress curve (AUDPC), comparisons between univariate MLM analysis of AUDPC and multivariate MLM analysis of longitudinal data were made. Univariate analysis had the advantage of simplicity and reduced computational demand, whereas multivariate analysis enabled a comprehensive perspective on disease development, providing the opportunity for unique insights into disease resistance. To aid in the application of multivariate MLM analysis of longitudinal data on disease resistance, annotated program syntax for model fitting is provided for the software ASReml.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PHYTO-10-11-0268DOI Listing

Publication Analysis

Top Keywords

longitudinal data
20
disease resistance
16
multivariate mlm
16
mlm analysis
16
analysis longitudinal
12
mixed linear
8
linear model
8
statistical technique
8
disease
8
analysis
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!