A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Osteogenic differentiation of human dental pulp stromal cells on 45S5 Bioglass® based scaffolds in vitro and in vivo. | LitMetric

The increasing clinical demand for bone substitutes has driven significant progress in cell-based therapies for bone tissue engineering. The underpinning goals for success are to identify the most appropriate cell source and to provide three-dimensional (3D) scaffolds that support cell growth and enhance osteogenic potential. In this study, human dental pulp stromal cells (HDPSCs) were cultured under basal or osteogenic conditions either in monolayers or on 3D Bioglass® scaffolds in vitro for 2 or 4 weeks. Cell-scaffold constructs were also implanted intraperitoneally in nude mice for 8 weeks. Osteogenic potential was assessed using quantitative real-time polymerase chain reaction and histological/immunohistochemical assays. In monolayer culture, osteoinductive conditions enhanced HDPSC expression of osteogenic gene markers (COL1A1, RUNX2, OC, and/or OCN) compared with basal conditions while culture of HDPSCs on 3D scaffolds promoted osteogenic gene expression compared with monolayer culture under both basal and osteogenic conditions. These results were confirmed using histological and immunohistochemical analyses. In vivo implantation of the HDPSC 3D Bioglass constructs showed evidence of sporadic woven bone-like spicules and calcified tissue. In conclusion, this study has demonstrated the potential of using a combination of HDPSCs with 3D 45S5 Bioglass scaffolds to promote bone-like tissue formation in vitro and in vivo, offering a promising approach for clinical bone repair and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3568968PMC
http://dx.doi.org/10.1089/ten.TEA.2012.0112DOI Listing

Publication Analysis

Top Keywords

human dental
8
dental pulp
8
pulp stromal
8
stromal cells
8
scaffolds vitro
8
vitro vivo
8
osteogenic potential
8
basal osteogenic
8
osteogenic conditions
8
monolayer culture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!