[Genetic aspects of osteoporosis].

Rev Invest Clin

Servicio de Genètica, Instituto Nacional de Rehabilitación, México, D.F.

Published: November 2012

Download full-text PDF

Source

Publication Analysis

Top Keywords

[genetic aspects
4
aspects osteoporosis]
4
[genetic
1
osteoporosis]
1

Similar Publications

Transcriptome and translatome profiling of Col-0 and grp7grp8 under ABA treatment in Arabidopsis.

Sci Data

December 2024

Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.

Abscisic acid (ABA) is a crucial phytohormone that regulates plant growth and stress responses. While substantial knowledge exists about transcriptional regulation, the molecular mechanisms underlying ABA-triggered translational regulation remain unclear. Recent advances in deep sequencing of ribosome footprints (Ribo-seq) enable the mapping and quantification of mRNA translation efficiency.

View Article and Find Full Text PDF

Motivation: We are witnessing an enormous growth in the amount of molecular profiling (-omics) data. The integration of multi-omics data is challenging. Moreover, human multi-omics data may be privacy-sensitive and can be misused to de-anonymize and (re-)identify individuals.

View Article and Find Full Text PDF

Background: Aicardi-Goutières Syndrome is a monogenic type 1 interferonopathy with infantile onset, characterized by a variable degree of neurological damage. Approximately 7% of Aicardi-Goutières Syndrome cases are caused by pathogenic variants in the ADAR gene and are classified as Aicardi-Goutières Syndrome type 6. Here, we present a new homozygous pathogenic variant in the ADAR gene.

View Article and Find Full Text PDF

Bias in machine learning applications to address non-communicable diseases at a population-level: a scoping review.

BMC Public Health

December 2024

Upstream Lab, MAP Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, Unity Health Toronto, 30 Bond Street, Toronto, ON, M5B 1W8, Canada.

Background: Machine learning (ML) is increasingly used in population and public health to support epidemiological studies, surveillance, and evaluation. Our objective was to conduct a scoping review to identify studies that use ML in population health, with a focus on its use in non-communicable diseases (NCDs). We also examine potential algorithmic biases in model design, training, and implementation, as well as efforts to mitigate these biases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!