Cellular complexity captured in durable silica biocomposites.

Proc Natl Acad Sci U S A

Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM 87106, USA.

Published: October 2012

Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491527PMC
http://dx.doi.org/10.1073/pnas.1205816109DOI Listing

Publication Analysis

Top Keywords

cultured cells
8
cellular architectures
8
structures functions
8
cellular
4
cellular complexity
4
complexity captured
4
captured durable
4
durable silica
4
silica biocomposites
4
biocomposites tissue-derived
4

Similar Publications

Genes related to neural tube defects and glioblastoma.

Sci Rep

January 2025

Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Key Laboratory of Coal Environmental Pathogenicity and Prevention (Ministry of Education, China, Shanxi Medical University, No. 56, Xinjian South Road, Yingze District, Taiyuan City, 030000, Shanxi Province, China.

There are many similarities between early embryonic development and tumorigenesis. The occurrence of neural tube defects (NTDs) and glioblastoma (GBM) are both related to the abnormal development of neuroectodermal cells. To obtain genes related to both NTDs and GBM, as well as small molecule drugs with potential clinical application value.

View Article and Find Full Text PDF

Diabetes is a detriment to male reproductive health, notably through its capacity to diminish secretion from accessory glands such as the seminal vesicles and prostate, which are crucial for reproductive function. Curcumin, a naturally derived polyphenol renowned for its anti-inflammatory and antioxidative attributes, has demonstrated potential in mitigating tissue damage across various organs in diabetic patients. Despite its established benefits, the specific impact of curcumin on seminal vesicle damage in the context of diabetes remains underexplored.

View Article and Find Full Text PDF

Prostate cancer (PCa) growth depends on de novo lipogenesis controlled by the mitochondrial pyruvate dehydrogenase complex (PDC). In this study, we identify lysine methyltransferase (KMT)9 as a regulator of PDC activity. KMT9 is localized in mitochondria of PCa cells, but not in mitochondria of other tumor cell types.

View Article and Find Full Text PDF

Combining 3D cultures such as tumor spheroids and organoids with spatial omics holds great potential for tissue biology and cancer research. Yet, this potential is presently limited by technical and financial challenges of spatial omics methods and 3D cultures. To address this, we combine dye diffusion, the Smart-seq3xpress protocol for deep single-cell gene expression profiling, and dedicated probabilistic inference methods into diffusion Smart-seq3 (Smart-seq3D), to reveal the transcriptome of single cells along with their position along the core-periphery axis of spheroids.

View Article and Find Full Text PDF

In late 2023 an H5N1 lineage of high pathogenicity avian influenza virus (HPAIV) began circulating in American dairy cattle Concerningly, high titres of virus were detected in cows' milk, raising the concern that milk could be a route of human infection. Cows' milk is typically pasteurised to render it safe for human consumption, but the effectiveness of pasteurisation on influenza viruses in milk was uncertain. To assess this, here we evaluate heat inactivation in milk for a panel of different influenza viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!