A feature shared by many inflammatory lung diseases is excessive neutrophilic infiltration. Neutrophil homing to airspaces involve multiple factors produced by several distinct cell types. Hepoxilin A(3) is a neutrophil chemoattractant produced by pathogen-infected epithelial cells that is hypothesized to facilitate neutrophil breach of mucosal barriers. Using a Transwell model of lung epithelial barriers infected with Pseudomonas aeruginosa, we explored the role of hepoxilin A(3) in neutrophil transepithelial migration. Pharmacological inhibitors of the enzymatic pathways necessary to generate hepoxilin A(3), including phospholipase A(2) and 12-lipoxygenase, potently interfere with P. aeruginosa-induced neutrophil transepithelial migration. Both transformed and primary human lung epithelial cells infected with P. aeruginosa generate hepoxilin A(3) precursor arachidonic acid. All four known lipoxygenase enzymes capable of synthesizing hepoxilin A(3) are expressed in lung epithelial cell lines, primary small airway epithelial cells, and human bronchial epithelial cells. Lung epithelial cells produce increased hepoxilin A(3) and lipid-derived neutrophil chemotactic activity in response to P. aeruginosa infection. Lipid-derived chemotactic activity is soluble epoxide hydrolase sensitive, consistent with hepoxilin A(3) serving a chemotactic role. Stable inhibitory structural analogs of hepoxilin A(3) are capable of impeding P. aeruginosa-induced neutrophil transepithelial migration. Finally, intranasal infection of mice with P. aeruginosa promotes enhanced cellular infiltrate into the airspace, as well as increased concentration of the 12-lipoxygenase metabolites hepoxilin A(3) and 12-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid. Data generated from multiple models in this study provide further evidence that hepoxilin A(3) is produced in response to lung pathogenic bacteria and functions to drive neutrophils across epithelial barriers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490410 | PMC |
http://dx.doi.org/10.4049/jimmunol.1201922 | DOI Listing |
Mol Biol Cell
January 2025
Department of Biology, The Catholic University of America, Washington, DC, 20064.
MAL2 (myelin and lymphocyte protein 2) and rab17 have been identified as hepatocellular carcinoma tumor suppressors. However, little is known how their functions in hepatic polarized protein sorting/trafficking translates into how they function in the epithelial to mesenchymal transition and/or the mesenchymal to epithelial transition in metastases. To investigate this, we expressed MAL2 and rab17 alone or together in hepatoma-derived Clone 9 cells (that lack endogenous MAL2 and rab17).
View Article and Find Full Text PDFCurr Hypertens Rep
January 2025
Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.
Purpose Of Review: The role of the lymphatic system in clearing extravasated fluids, lipid transport, and immune surveillance is well established, and lymphatic vasculature can provide a vital role in facilitating crosstalk among various organ systems. Lymphatic vessels rely on intrinsic and local factors to absorb and propel lymph from the interstitium back to the systemic circulation. The biological implications of local influences on lymphatic vessels are underscored by the exquisite sensitivity of these vessels to environmental stimuli.
View Article and Find Full Text PDFJ Cell Biol
February 2025
Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.
Mutations that increase LRRK2 kinase activity have been linked to Parkinson's disease and Crohn's disease. LRRK2 is also activated by lysosome damage. However, the endogenous cellular mechanisms that control LRRK2 kinase activity are not well understood.
View Article and Find Full Text PDFJ Exp Med
February 2025
Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, University Paris Cité, Paris, France.
IKKα, encoded by CHUK, is crucial in the non-canonical NF-κB pathway and part of the IKK complex activating the canonical pathway alongside IKKβ. The absence of IKKα causes fetal encasement syndrome in humans, fatal in utero, while an impaired IKKα-NIK interaction was reported in a single patient and causes combined immunodeficiency. Here, we describe compound heterozygous variants in the kinase domain of IKKα in a female patient with hypogammaglobulinemia, recurrent lung infections, and Hay-Wells syndrome-like features.
View Article and Find Full Text PDFJ Cell Biol
March 2025
Department of Biological Sciences, Laboratory of Cell Biology and Biochemistry, Tokyo Metropolitan University, Tokyo, Japan.
The accumulation of defective polypeptides in cells is a major cause of various diseases. However, probing defective proteins is difficult because no currently available method can retrieve unstable defective translational products in a soluble state. To overcome this issue, there is a need for a molecular device specific to structurally defective polypeptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!