The uniporter TAT1 (Slc16a10) mediates the facilitated diffusion of aromatic amino acids (AAAs) across basolateral membranes of kidney, small intestine and liver epithelial cells, and across the plasma membrane of non-epithelial cells like skeletal myocytes. Its role for body AA homeostasis has now been investigated using newly generated TAT1 (Slc16a10) defective mice (tat1(-/-)). These mice grow and reproduce normally, show no gross phenotype and no obvious neurological defect. Histological analysis did not reveal abnormalities and there is no compensatory change in any tested AA transporter mRNA. TAT1 null mice, however, display increased plasma, muscle and kidney AAA concentration under both normal and high protein diet, although this concentration remains normal in the liver. A major aromatic aminoaciduria and a smaller urinary loss of all substrates additionally transported by l-type AA antiporter Lat2-4F2hc (Slc7a8) were revealed under a high protein diet. This suggests an epithelial transport defect as also shown by the accumulation of intravenously injected (123)I-2-I-l-Phe in kidney and l-[(3)H]Phe in ex vivo everted gut sac enterocytes. Taken together, these data indicate that the uniporter TAT1 is required to equilibrate the concentration of AAAs across specific membranes. For instance, it enables hepatocytes to function as a sink that controls the extracellular AAAs concentration. Additionally, it facilitates the release of AAAs across the basolateral membrane of small intestine and proximal kidney tubule epithelial cells, thereby allowing the efflux of other neutral AAs presumably via Lat2-4F2hc.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3533202 | PMC |
http://dx.doi.org/10.1113/jphysiol.2012.239574 | DOI Listing |
Int J Mol Sci
May 2021
Department of Life Sciences and Chemistry, Focus Area HEALTH, Jacobs University Bremen, Campus Ring 1, D-28759 Bremen, Germany.
Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gα-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gα-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
December 2019
Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodostrian University of Athens, Panepistimiopolis, 157 01, Athens, Greece.
Purpose: Bladder cancer represents a major cause of malignancy-related morbidity and the most expensive per-patient-to-treat cancer, due to the lifelong surveillance of the patients. Accurate disease prognosis is essential in establishing personalized treatment decisions; yet optimum tools for precise risk stratification remain a competing task. In the present study, we have performed the complete evaluation of TP63 clinical significance in improving disease prognosis.
View Article and Find Full Text PDFFront Physiol
June 2019
Institute of Medical Molecular Genetics, University of Zurich, Zurich, Switzerland.
Cataract, the loss of ocular lens transparency, accounts for ∼50% of worldwide blindness and has been associated with water and solute transport dysfunction across lens cellular barriers. We show that neutral amino acid antiporter LAT2 ) and uniporter TAT1 () are expressed on mouse ciliary epithelium and LAT2 also in lens epithelium. Correspondingly, deletion of LAT2 induced a dramatic decrease in lens essential amino acid levels that was modulated by TAT1 defect.
View Article and Find Full Text PDFJ Am Soc Nephrol
June 2018
Department of Biochemistry and Molecular Medicine, Biology Faculty, University of Barcelona, Barcelona, Spain;
Reabsorption of amino acids (AAs) across the renal proximal tubule is crucial for intracellular and whole organism AA homeostasis. Although the luminal transport step is well understood, with several diseases caused by dysregulation of this process, the basolateral transport step is not understood. In humans, only cationic aminoaciduria due to malfunction of the basolateral transporter yLAT1/CD98hc (SLC7A7/SLC3A2), which mediates the export of cationic AAs, has been described.
View Article and Find Full Text PDFSci Rep
March 2018
Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, 20892, USA.
Transmembrane proteins that mediate the cellular uptake or efflux of thyroid hormone potentially provide a key level of control over neurodevelopment. In humans, defects in one such protein, solute carrier SLC16A2 (MCT8) are associated with psychomotor retardation. Other proteins that transport the active form of thyroid hormone triiodothyronine (T3) or its precursor thyroxine (T4) have been identified in vitro but the wider significance of such transporters in vivo is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!