Primary plasma cell leukemia (pPCL) is a rare, yet aggressive form of de novo plasma cell tumor, distinct from secondary PCL (sPCL) which represents a leukemic transformation of pre-existing multiple myeloma (MM). Herein, we performed a comprehensive molecular analysis of a prospective series of pPCLs by means of FISH, single nucleotide polymorphism (SNP) array and gene expression profiling (GEP). IGH@ translocations were identified in 87% of pPCL cases, with prevalence of t(11;14) (40%) and t(14;16) (30.5%), whereas the most frequent numerical alterations involved 1p (38%), 1q (48%), 6q (29%), 8p (42%), 13q (74%), 14q (71%), 16q (53%), and 17p (35%). We identified a minimal biallelic deletion (1.5 Mb) in 8p21.2 encompassing the PPP2R2A gene, belonging to a family of putative tumor suppressors and found to be significantly down-regulated in deleted cases. Mutations of TP53 were identified in four cases, all but one associated with a monoallelic deletion of the gene, whereas activating mutations of the BRAF oncogene occurred in one case and were absent in N- and K-RAS. To evaluate the influence of allelic imbalances in transcriptional expression we performed an integrated genomic analysis with GEP data, showing a significant dosage effect of genes involved in transcription, translation, methyltransferase activity, apoptosis as well as Wnt and NF-kB signaling pathways. Overall, we provide a compendium of genomic alterations in a prospective series of pPCLs which may contribute to improve our understanding of the pathogenesis of this aggressive form of plasma cell dyscrasia and the mechanisms of tumor progression in MM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajh.23339 | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
Introduction: Convalescent plasma (CP) therapy is a form of passive immunization which has been used as a treatment for coronavirus disease 2019 (COVID-19). This study aims to evaluate the efficacy and safety of CP therapy in patients with severe COVID-19.
Methodology: In this retrospective cohort study, 50 patients with severe COVID-19 treated with CP at Shahid Beheshti Hospital, Kashan, in 2019 were evaluated.
BMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Pharmacology, Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan.
Recently, exposure to sounds with ultrasound (US) components has been shown to modulate brain activity. However, the effects of US on emotional states remain poorly understood. We previously demonstrated that the olfactory bulbectomized (OBX) rat depression model is suitable for examining the effects of audible sounds on emotionality.
View Article and Find Full Text PDFBr J Cancer
January 2025
Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
Background: Pancreatic ductal adenocarcinoma (PDAC) exhibits a high frequency of neural invasion (NI). Schwann cells (SCs) have been shown to be reprogrammed to facilitate cancer cell migration and invasion into nerves. Since extracellular vesicles (EVs) affect the tumour microenvironment and promote metastasis, the present study analysed the involvement of EVs from pancreatic cancer cells and their microenvironment in altering SC phenotype as part of the early events in the process of NI.
View Article and Find Full Text PDFCell Death Dis
January 2025
CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!