AI Article Synopsis

  • Racial/ethnic origin significantly impacts fracture risk, with differences in fracture rates not solely attributed to bone mineral density (BMD).
  • The study analyzed hip geometry and strength among 1,942 premenopausal and early perimenopausal women from diverse backgrounds, revealing that African American and Japanese women exhibited more favorable hip structural characteristics compared to other groups.
  • Findings suggest that variations in hip geometry may help explain the observed racial/ethnic differences in fracture rates, emphasizing the need for further research in this area.

Article Abstract

Racial/ethnic origin plays an important role in fracture risk. Racial/ethnic differences in fracture rates cannot be fully explained by bone mineral density (BMD). Studies examining the influence of bone geometry and strength on fracture risk have focused primarily on older adults and have not included people from diverse racial/ethnic backgrounds. Our goal was to explore racial/ethnic differences in hip geometry and strength in a large sample of midlife women. We performed hip structure analysis (HSA) on hip dual-energy X-ray absorptiometry (DXA) scans from 1942 premenopausal and early perimenopausal women. The sample included white (50%), African American (27%), Chinese (11%), and Japanese (12%) women aged 42 to 52 years. HSA was performed using software developed at Johns Hopkins University. African American women had higher conventional (8.4% to 9.7%) and HSA BMD (5.4% to 19.8%) than other groups with the exception being Japanese women, who had the highest HSA BMD (9.7% to 31.4%). HSA indices associated with more favorable geometry and greater strength and resistance to fracture were more prevalent in African American and Japanese women. Femurs of African American women had a smaller outer diameter, a larger cross-sectional area and section modulus, and a lower buckling ratio. Japanese women presented a different pattern with a higher section modulus and lower buckling ratio, similar to African American women, but a wider outer diameter; this was offset by a greater cross-sectional area and a more centrally located centroid. Chinese women had similar conventional BMD as white women but a smaller neck region area and HSA BMD at both regions. They also had a smaller cross-sectional area and section modulus, a more medially located centroid, and a higher buckling ratio than white women. The observed biomechanical differences may help explain racial/ethnic variability in fracture rates. Future research should explore the contribution of hip geometry to fracture risk across all race/ethnicities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586935PMC
http://dx.doi.org/10.1002/jbmr.1781DOI Listing

Publication Analysis

Top Keywords

african american
20
fracture risk
12
women
12
american women
12
hsa bmd
12
japanese women
12
cross-sectional area
12
buckling ratio
12
bone geometry
8
hip structure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!