Facile synthesis of novel hierarchical graphene-Bi2O2CO3 composites with enhanced photocatalytic performance under visible light.

Dalton Trans

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.

Published: December 2012

A facile template-free hydrothermal approach is developed to synthesize hierarchical flower-like graphene-Bi(2)O(2)CO(3) microcomposites. The as-prepared samples were systematically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, N(2) adsorption-desorption and UV-visible diffuse reflectance spectroscopy. The photocatalytic activity of the as-prepared samples was evaluated towards degradation of Rhodamine B (RhB) under visible light. Compared to hierarchical Bi(2)O(2)CO(3), hierarchical flower-like graphene-Bi(2)O(2)CO(3) microcomposites show enhanced photocatalytic activity. In addition, our results indicate that both the physico-chemical properties and associated photocatalytic activity of graphene-Bi(2)O(2)CO(3) composites are shown to be dependent on graphene loadings. The highest photocatalytic performance can be achieved for the graphene-Bi(2)O(2)CO(3) microcomposites with 1.0 wt% graphene. The underlying mechanism responsible for the formation of graphene-Bi(2)O(2)CO(3) composites and enhanced photoreactivity was discussed. Results from this study illustrate an entirely new approach to fabricate semiconductor composites containing graphene-bismuth with high visible-responsive photocatalytic performance.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2dt31528aDOI Listing

Publication Analysis

Top Keywords

graphene-bi2o2co3 composites
12
photocatalytic performance
12
graphene-bi2o2co3 microcomposites
12
photocatalytic activity
12
composites enhanced
8
enhanced photocatalytic
8
visible light
8
hierarchical flower-like
8
flower-like graphene-bi2o2co3
8
as-prepared samples
8

Similar Publications

A facile template-free hydrothermal approach is developed to synthesize hierarchical flower-like graphene-Bi(2)O(2)CO(3) microcomposites. The as-prepared samples were systematically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, N(2) adsorption-desorption and UV-visible diffuse reflectance spectroscopy. The photocatalytic activity of the as-prepared samples was evaluated towards degradation of Rhodamine B (RhB) under visible light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!