Overexpression of soybean GmCBL1 enhances abiotic stress tolerance and promotes hypocotyl elongation in Arabidopsis.

Biochem Biophys Res Commun

The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan 430074, China.

Published: November 2012

Although extensive studies and remarkable progress have been made with Arabidopsis calcineurin B-like proteins (CBLs), knowledge of their functions in other plant species is still limited. Here we isolated gene GmCBL1 from soybean, a homolog of AtCBL1 in Arabidopsis. GmCBL1 was differentially induced by multiple abiotic stress and plant hormones, and its transcripts were abundant in seedlings and mature roots. We over-expressed GmCBL1 in Arabidopsis and found that it enhanced tolerances to both high salt and drought stresses in the transgenic plants. Overexpression of GmCBL1 also promoted hypocotyl elongation under light conditions. GmCBL1 may regulate stress tolerance through activation of stress-related genes, and may control hypocotyl development by altering the expression of gibberellin biosynthesis-related genes. This study identifies a putative soybean CBL gene that functions in both stress tolerance and light-dependent hypocotyl development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2012.09.128DOI Listing

Publication Analysis

Top Keywords

stress tolerance
12
abiotic stress
8
hypocotyl elongation
8
hypocotyl development
8
gmcbl1
6
overexpression soybean
4
soybean gmcbl1
4
gmcbl1 enhances
4
enhances abiotic
4
stress
4

Similar Publications

Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans.

View Article and Find Full Text PDF

Phylogenetic relationships and genetic diversity of Tunisian maize landraces.

PLoS One

January 2025

Misión Biológica de Galicia (Spanish National Research Council, CSIC) Apdo 28, Pontevedra, Spain.

Based on history, maize was first introduced into Tunisia and northern Africa, at large, from the south of Spain. Several subsequent introductions were made from diverse origins, generating new landraces by recombination and selection for adaptation to arid environments. This study aimed to investigate the phylogenetic relationships among Tunisian maize landraces with possible sources of introduction from neighboring countries.

View Article and Find Full Text PDF

Linkage Mapping and Identification of Candidate Genes for Cold Tolerance in Rice (Oryza Sativa L.) at the Bud Bursting Stage.

Rice (N Y)

January 2025

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.

View Article and Find Full Text PDF

Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.

View Article and Find Full Text PDF

CTB6 Confers Cold Tolerance at the Booting Stage by Maintaining Tapetum Development in Rice.

Adv Sci (Weinh)

January 2025

Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!