Although extensive studies and remarkable progress have been made with Arabidopsis calcineurin B-like proteins (CBLs), knowledge of their functions in other plant species is still limited. Here we isolated gene GmCBL1 from soybean, a homolog of AtCBL1 in Arabidopsis. GmCBL1 was differentially induced by multiple abiotic stress and plant hormones, and its transcripts were abundant in seedlings and mature roots. We over-expressed GmCBL1 in Arabidopsis and found that it enhanced tolerances to both high salt and drought stresses in the transgenic plants. Overexpression of GmCBL1 also promoted hypocotyl elongation under light conditions. GmCBL1 may regulate stress tolerance through activation of stress-related genes, and may control hypocotyl development by altering the expression of gibberellin biosynthesis-related genes. This study identifies a putative soybean CBL gene that functions in both stress tolerance and light-dependent hypocotyl development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2012.09.128 | DOI Listing |
PLoS One
January 2025
Institute for Global Ecology, Florida Institute of Technology, Melbourne, Florida, United States of America.
Marine heatwaves are increasing in intensity and frequency however, responses and survival of reef corals vary geographically. Geographical differences in thermal tolerance may be in part a consequence of intraspecific diversity, where high-diversity localities are more likely to support heat-tolerant alleles that promote survival through thermal stress. Here, we assessed geographical patterns of intraspecific genetic diversity in the ubiquitous coral Pocillopora damicornis species complex using 428 sequences of the Internal Transcribed Spacer 2 (ITS2) region across 44 sites in the Pacific and Indian Oceans.
View Article and Find Full Text PDFPLoS One
January 2025
Misión Biológica de Galicia (Spanish National Research Council, CSIC) Apdo 28, Pontevedra, Spain.
Based on history, maize was first introduced into Tunisia and northern Africa, at large, from the south of Spain. Several subsequent introductions were made from diverse origins, generating new landraces by recombination and selection for adaptation to arid environments. This study aimed to investigate the phylogenetic relationships among Tunisian maize landraces with possible sources of introduction from neighboring countries.
View Article and Find Full Text PDFRice (N Y)
January 2025
State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Rice is highly sensitive to low temperatures, making cold stress a significant factor limiting its growth, especially during the bud bursting stage. To address this, an RIL population derived from a cross between cold-tolerant and cold-sensitive rice varieties was used to identify nine QTLs linked to cold tolerance under temperatures of 4 ℃, 5 °C, and 6 ℃ using a high-density genetic map. One candidate gene, LOC_Os07g44410, was identified through gene function annotation, haplotype analysis, and qRT-PCR, with two main haplotypes (Hap1 and Hap2) showing distinct phenotypic differences.
View Article and Find Full Text PDFInt Microbiol
January 2025
State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
Cultivable microbial communities associated with plants inhabiting extreme environments have great potential in biotechnological applications. However, there is a lack of knowledge about these microorganisms from Bryophyllum pinnatum (which survives in severely barren soil) and their ability to promote plant growth. The present study focused on the isolation, identification, biochemical characterization, and potential applications of root endophytic bacteria and rhizosphere bacteria.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Frontiers Science Center for Molecular Design Breeding, Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
Rice is highly sensitive to cold stress, particularly at the booting stage, which significantly threatens rice production. In this study, we cloned a gene, CTB6, encoding a lipid transfer protein involved in cold tolerance at the booting stage in rice, based on our previous fine-mapped quantitative trait locus (QTL) qCTB10-2. CTB6 is mainly expressed in the tapetum and young microspores of the anther.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!