Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The major constituent of the eukaryotic ER protein-translocation channel (Sec61p in yeast, Sec61α in higher eukaryotes) shows a high degree of evolutionary conservation from yeast to humans. The vast majority of eukaryotic species have a conserved di-tyrosine in the 4th ER luminal loop. Previously, we discovered through a screen of ethylnitrosourea- (ENU-) mutagenized mice that substitution of the latter of these tyrosines with histidine (Y344H) of the murine Sec61α protein results in diabetes and hepatic steatosis in mice that is a result of ER stress. To further characterize the mechanism behind ER stress in these mice we made the homologous mutation in yeast Sec61p (Y345H). We found that this mutation increased sensitivity of yeast to ER stressing agents and to reduction of Inositol Requiring Enzyme 1 (IRE1) activity. Furthermore, we found that, while this mutation did not affect translocation, it did delay degradation of the model ER-associated degradation (ERAD) substrate CPY(∗). Replacing both ER luminal tyrosines with alanines resulted in a destabilization of the Sec61 protein that was rescued by over expression of Sss1p. This double mutant still lacked a noticeable translocation defect after stabilization by Sss1p, but exhibited a similar defect in CPY(∗) degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3490007 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2012.09.136 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!