Measles vaccination using a microneedle patch.

Vaccine

Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, Georgia Institute of Technology, Atlanta, GA 30332, United States.

Published: July 2013

Measles vaccination programs would benefit from delivery methods that decrease cost, simplify logistics, and increase safety. Conventional subcutaneous injection is limited by the need for skilled healthcare professionals to reconstitute and administer injections, and by the need for safe needle handling and disposal to reduce the risk of disease transmission through needle re-use and needlestick injury. Microneedles are micron-scale, solid needles coated with a dry formulation of vaccine that dissolves in the skin within minutes after patch application. By avoiding the use of hypodermic needles, vaccination using a microneedle patch could be carried out by minimally trained personnel with reduced risk of blood-borne disease transmission. The goal of this study was to evaluate measles vaccination using a microneedle patch to address some of the limitations of subcutaneous injection. Viability of vaccine virus dried onto a microneedle patch was stabilized by incorporation of the sugar, trehalose, and loss of viral titer was less than 1 log10(TCID50) after storage for at least 30 days at room temperature. Microneedle patches were then used to immunize cotton rats with the Edmonston-Zagreb measles vaccine strain. Vaccination using microneedles at doses equaling the standard human dose or one-fifth the human dose generated neutralizing antibody levels equivalent to those of a subcutaneous immunization at the same dose. These results show that measles vaccine can be stabilized on microneedles and that vaccine efficiently reconstitutes in vivo to generate a neutralizing antibody response equivalent to that generated by subcutaneous injection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3706567PMC
http://dx.doi.org/10.1016/j.vaccine.2012.09.062DOI Listing

Publication Analysis

Top Keywords

microneedle patch
16
measles vaccination
12
vaccination microneedle
12
subcutaneous injection
12
disease transmission
8
measles vaccine
8
human dose
8
neutralizing antibody
8
measles
5
microneedle
5

Similar Publications

Corrigendum to "Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment" [Int. J. Pharm. 669 (2025) 125072].

Int J Pharm

January 2025

Pharmaceutical Development of Green Innovations Group (PDGIG) Department of Industrial Pharmacy Faculty of Pharmacy Silpakorn University Nakhon Pathom Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000 Thailand. Electronic address:

View Article and Find Full Text PDF

Bee venom acupuncture (BVA) offers therapeutic potential for rheumatoid arthritis (RA) but faces challenges from pain and allergies linked to live bee stings. A key hurdle is melittin (Mel), bee venom's main anti-inflammatory component, which degrades rapidly when orally ingested, leading to decreased efficacy and increased toxicity. This study proposes a solution by encapsulating melittin in liposomes to enhance stability and lessen side effects, expanding its clinical applicability.

View Article and Find Full Text PDF

Formulation, development and in vivo characterization of selegiline hydrochloride nanostructured lipid nanocarrier loaded microneedle array patch for depression.

Int J Pharm

January 2025

Department of Pharmaceutics, Bharti Vidyapeeth Deemed to be University, Poona College of Pharmacy, Erandwane, Pune 411038, Maharashtra, India. Electronic address:

Depression is a common mental condition causing depressed mood and loss of pleasure. The primary treatment approach for the management of depression consists of the use of selegiline (MAO-B) inhibitor compound. The present work aimed to develop and optimize selegiline-loaded nanostructured lipid carriers for transdermal application, utilizing a 2 full factorial design approach.

View Article and Find Full Text PDF

Background/objectives: COVID-19 vaccines effectively prevent severe disease, but unequal distribution, especially in low- and middle-income countries, has led to vaccine-resistant strains. This highlights the urgent need for alternative vaccine platforms that are safe, thermostable, and easy to distribute. This study evaluates the immunogenicity, stability, and scalability of a dissolved microneedle array patch (MAP) delivering the rS1RS09 subunit vaccine, comprising the SARS-CoV-2 S1 monomer and RS09, a TLR-4 agonist peptide.

View Article and Find Full Text PDF

Beyond Needles: Immunomodulatory Hydrogel-Guided Vaccine Delivery Systems.

Gels

December 2024

Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

Vaccines are critical for combating infectious diseases, saving millions of lives worldwide each year. Effective immunization requires precise vaccine delivery to ensure proper antigen transport and robust immune activation. Traditional vaccine delivery systems, however, face significant challenges, including low immunogenicity and undesirable inflammatory reactions, limiting their efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!