Novel bio-antifelting agent based on waterborne polyurethane and cellulose nanocrystals.

Carbohydr Polym

College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, PR China.

Published: January 2013

Novel nanocomposites made from cellulose nanocrystals and waterborne polyurethane were employed as wool antifelting agents. The cellulose nanocrystals, prepared by acid hydrolysis of cellulose microcrystalline, are in rod form with lengths of 70-150 nm and diameters of 10-20 nm in aqueous suspension, respectively. After the two aqueous suspensions were mixed homogeneously, cellulose nanocrystal reinforced polyurethane composite (nanocomposite) films were prepared and evaluated by means of transmission electron microscopy, scanning electron microscopy and dynamic mechanical analysis. Then the nanocrystal films were applied onto surfaces of wools by a pad-dry-cure process with nanocomposites containing different cellulose nanocrystal contents. The results indicated that with increasing cellulose nanocrystal content from 0 to 1.0 wt%, the area-shrinking rate of the treated wool fabrics was decreased from 5.24% to 0.70%, and the tensile strength of the fabric was increased by 14.95% and decreased about 44% use of waterborne polyurethane.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2012.08.020DOI Listing

Publication Analysis

Top Keywords

waterborne polyurethane
12
cellulose nanocrystals
12
cellulose nanocrystal
12
nanocomposites cellulose
8
electron microscopy
8
cellulose
7
novel bio-antifelting
4
bio-antifelting agent
4
agent based
4
based waterborne
4

Similar Publications

Nowadays, much attention is paid to the development of high-performance and multifunctional materials, but it is still a great challenge to obtain polymer materials with high mechanical properties, high self-healing properties, and multifunctionality in one. Herein, an innovative strategy is proposed to obtain a satisfactory waterborne polyurethane (PMWPU-Bx) by in situ anchoring 3-aminophenylboronic acid (3-APBA) in a pyrene-capped waterborne polyurethane (PMWPU) via supramolecular interactions. The multiple functional sites inherent in 3-APBA can produce supramolecular interactions with groups on PMWPU, promoting the aggregation of hard domains in the polymer network, which confers the PMWPU-Bx strength (7.

View Article and Find Full Text PDF

Within the context of the circular economy, the transformation of agri-food waste or by-products into valuable products is essential to promoting a transition towards more sustainable and efficient utilisation of resources. Whey is a very abundant by-product of dairy manufacturing. Apart from partial reutilisation in animal feed or some food supplements, the sustainable management and disposal of whey still represent significant environmental challenges.

View Article and Find Full Text PDF

Preparation and properties of waterborne polyurethane/nanocellulose/sepiolite composite aerogel for sound absorption and heat insulation.

Int J Biol Macromol

January 2025

College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China. Electronic address:

Faced with all kinds of serious ecological and environmental protection problems in today's society, development must take the sustainable and green road. Nanocellulose aerogels with the advantages of wide resource of raw materials, low cost, good biocompatibility and biodegradation, are good thermal and sound insulation materials. Herein, a versatile composite aerogel with good thermal stability and heat-insulating property was prepared by freeze-drying method using cellulose nanocrystals (CNCs), waterborne polyurethane (WPU) and sepiolite (SEP) as substrates.

View Article and Find Full Text PDF

In this study, waterborne polyurethane (WPU), a novel modifier, was used for the wet surface modification of talc, and its mechanism was investigated. Polypropylene (PP)-based composites with modified talc were synthesized and subjected to an examination of their mechanical properties. The wetting contact angle demonstrated that the modified talc exhibited an excellent modification effect at a specific amount of modifier (2.

View Article and Find Full Text PDF

Fabrication of Polyurethane-Polyacrylate Hybrid Latexes with High Organosilicon Content via Phase Inversion Emulsion Polymerization.

Molecules

December 2024

Key Laboratory of Advanced Materials of Ministry of Education of China, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.

Waterborne polyurethane, with a mechanical strength comparable to solvent-based types, is eco-friendly and safe, using water as a dispersion medium. Polyacrylate excels in film formation and weather resistance but suffers from "hot stickiness and cold brittleness". Merging polyurethane and polyacrylate creates advanced hybrids, while organosilicon enhances properties but is restricted due to hydrolytic crosslinking.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!