Use of a sealant to prevent prolonged air leaks after lung resection: a prospective randomized study.

J Cardiothorac Surg

Department of Thoracic Surgery, IRCCS-CROB Centro Riferimento Oncologico Basilicata, Rionero in Vulture, PZ, Italy.

Published: October 2012

Background: Pulmonary air leaks are common complications of lung resection and result in prolonged hospital stays and increased costs. The purpose of this study was to investigate whether, compared with standard care, the use of a synthetic polyethylene glycol matrix (CoSeal®) could reduce air leaks detected by means of a digital chest drain system (DigiVent™), in patients undergoing lung resection (sutures and/or staples alone).

Methods: Patients who intraoperatively showed moderate or severe air leaks (evaluated by water submersion tests) were intraoperatively randomized to receive just sutures/staples (control group) or sutures/staples plus CoSeal® (sealant group). Differences among the groups in terms of air leaks, prolonged air leaks, time to chest tube removal, length of hospital stay and related costs were assessed.

Results: In total, 216 lung resection patients completed the study. Nineteen patients (18.1%) in the control group and 12 (10.8%) patients in the sealant group experienced postoperative air leaks, while a prolonged air leak was recorded in 11.4% (n=12) of patients in the control group and 2.7% (n=3) of patients in the sealant group. The difference in the incidence of air leaks and prolonged air leaks between the two groups was statistically significant (p=0.0002 and p=0.0013). The mean length of hospital stay was significantly shorter in the sealant group (4 days) than the control group (8 days) (p=0.0001). We also observed lower costs in the sealant group than the control group.

Conclusion: The use of CoSeal® may decrease the occurrence and severity of postoperative air leaks after lung resection and is associated with shorter hospital stay.

Trial Registration: Not registered. The trial was approved by the Institutional Review Board of the IRCCS-CROB Basilicata Regional Cancer Institute, Rionero in Vulture, Italy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3508954PMC
http://dx.doi.org/10.1186/1749-8090-7-106DOI Listing

Publication Analysis

Top Keywords

air leaks
40
lung resection
20
sealant group
20
prolonged air
16
control group
16
leaks prolonged
12
air
11
leaks
10
group
9
leaks lung
8

Similar Publications

Chest tube provocative clamping in patients having moderate or intense air leaks after lung resection to accelerate recovery.

J Thorac Dis

December 2024

Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.

Background: Postoperative air leak is the most common complication after pulmonary resection. "Provocative clamping" was first described in 1992 in the context of guiding chest tube removal despite persistent air leak. However, early provocative clamping after pulmonary resection has not been evaluated.

View Article and Find Full Text PDF

Even though the COVID-19 pandemic now belongs to the long history of infectious diseases that have struck humanity, pathogenic biological agents continue to pose a recurring threat in private places, but also and mainly in places where the public congregates. In our recent research published in this journal in 2022 and 2023, we considered the illustrative example of a commuter train coach in which a symptomatic or asymptomatic passenger, assumed to be infected with a respiratory disease, sits among other travellers. The passenger emits liquid particles containing, for example, COVID-19 virions or any other pathogen.

View Article and Find Full Text PDF

Background: Impairment of the visceral pleura following thoracic surgery often leads to air leaks and intrathoracic adhesions. For preventing such complications, mesothelial cell proliferation at the pleural defects can be effective. To develop new materials for pleural defects restoration, we constructed a hybrid artificial pleural tissue (H-APLT) combining polyglycolic acid (PGA) nanofiber sheets with a three-dimensional culture of mesothelial cells and fibroblasts and evaluated its therapeutic efficacy in a rat pleural defect model.

View Article and Find Full Text PDF

Methane emissions from the Nord Stream subsea pipeline leaks.

Nature

January 2025

Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.

The amount of methane released to the atmosphere from the Nord Stream subsea pipeline leaks remains uncertain, as reflected in a wide range of estimates. A lack of information regarding the temporal variation in atmospheric emissions has made it challenging to reconcile pipeline volumetric (bottom-up) estimates with measurement-based (top-down) estimates. Here we simulate pipeline rupture emission rates and integrate these with methane dissolution and sea-surface outgassing estimates to model the evolution of atmospheric emissions from the leaks.

View Article and Find Full Text PDF

The plane running between two adjacent pulmonary segments consists of a very thin layer of connective tissue through which the pulmonary vein also runs. To perform an anatomically correct segmentectomy, this segmental plane needs to be divided. Before the operation, the locations of vessels and bronchi are confirmed by three-dimensional computed tomography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!