Topical administration of celecoxib proved to be an effective mean of preventing skin cancer development and improving anticancer drugs effectiveness in skin tumors treatment. The aim of this study was the development of an effective topical formulation of celecoxib, able to promote drug skin delivery, providing its in depth penetration through the skin layers. Three kinds of vesicular formulations have been investigated as drug carriers: liposomes containing a surfactant, or transfersomes and ethosomes, containing suitable edge activators. Firstly, the effect of membrane composition variations on the system performance has been evaluated for each vesicle type. Selected formulations were characterized for particle size, polydispersity index and encapsulation efficiency. The best formulations were subjected to ex vivo permeation studies through excised human skin. All vesicular formulations markedly (p < 0.001) improved the drug amount penetrated into the skin with respect to an aqueous suspension, from 2.0 to 6.5, up to 9.0 folds for liposomes, transfersomes and ethosomes, respectively. In particular, ethosomes containing Tween 20 as edge activator not only showed the best vesicle dimensions and homogeneity, and the highest encapsulation efficacy (54.4%), but also enabled the highest increase in drug penetration through the skin, probably due to the simultaneous presence in their composition of ethanol and Tween 20, both acting as permeation enhancers. Therefore, among the various vesicular formulations examined in the study, Tween 20-ethosomes can be considered the most promising one as carrier for topical celecoxib applications aimed to prevent skin cancer development and increase the anticancer drugs effectiveness against skin tumors.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10717544.2012.724472DOI Listing

Publication Analysis

Top Keywords

transfersomes ethosomes
12
vesicular formulations
12
skin
9
liposomes transfersomes
8
skin cancer
8
cancer development
8
anticancer drugs
8
drugs effectiveness
8
effectiveness skin
8
skin tumors
8

Similar Publications

Article Synopsis
  • Chemotherapy-induced alopecia can negatively affect patients' mental health, and this study explores using Phenylephrine, a topical vasoconstrictor, to potentially reduce hair loss during chemotherapy.
  • The research focused on improving the skin permeation and sustained release of Phenylephrine using different lipid vesicles (ethosomes, invasomes, transfersomes) incorporated into hydrogels.
  • Findings revealed that ethosomal and invasomal gels significantly improved drug delivery efficiency when compared to traditional gels, indicating their potential effectiveness in targeting local vasculature for sustained vasoconstriction.
View Article and Find Full Text PDF

In recent years, bioactive constituents from plants have been investigated as an alternative to synthetic approaches of therapeutics. Mangiferin (MGF) is a xanthone glycoside extracted from Mangifera indica and has shown numerous medicinal properties, such as antimicrobial, anti-diarrhoeal, antiviral, anti-inflammatory, antihypertensive, anti-tumours, and anti-diabetic effects. However, there are numerous challenges to its effective therapeutic usage, including its low water solubility, limited absorption, and poor bioavailability.

View Article and Find Full Text PDF
Article Synopsis
  • Ginsenosides, found in Panax ginseng, are known for various therapeutic effects, but their poor absorption due to low water solubility and other factors limits their effectiveness.
  • The study explored extraction methods and innovative delivery systems like liposomes and nanoparticles to enhance the bioavailability of ginsenosides.
  • Although these micro/nanoscale delivery techniques show promise, challenges in their clinical application remain, indicating the need for further research.
View Article and Find Full Text PDF

Phytochemicals, the bioactive compounds in plants, possess therapeutic benefits, such as antimicrobial, antioxidant, and pharmacological activities. However, their clinical use is often hindered by poor bioavailability and stability. Phytosome technology enhances the absorption and efficacy of these compounds by integrating vesicular systems like liposomes, niosomes, transfersomes, and ethosomes.

View Article and Find Full Text PDF

Transdermal drug delivery is an attractive and patient-friendly route for administering therapeutic agents. However, the skin's natural barrier, the stratum corneum, restricts the passage of many drugs, limiting their effectiveness. To overcome this challenge, researchers have developed various nanocarriers to enhance drug penetration through the skin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!